Clear Vibrations

Quakertown, PA's Mobile Enhancement Headquarters

550 California Road Suite 7
Quakertown, PA 18951
267-227-3875
  • Home
  • Services
    • Car Audio
    • Custom Installation
    • Driver Safety
    • Fleet Services
    • Remote Car Starters
  • About Us
    • Work for Clear Vibrations
  • Reviews
  • Location
  • Contact Us
  • Facebook
  • Instagram
  • Twitter
  • YouTube

Your Installer Should Aim Your Car Audio Tweeters

Aim Tweeters

The staff here at BestCarAudio.com look at dozens of installation photos each day and continue to see tweeters that aren’t installed in a way that will maximize the listening experience. Our goal is to help consumers get the best performance possible from their car audio system upgrades, so we’re going to perform two tests to demonstrate the importance of understanding speaker dispersion patterns. This information is vital to optimizing the angle at which tweeters are installed in a car audio system.

Let’s Talk About Speaker Directivity, Again

The term directivity describes where the sound created by a speaker goes. For the purposes of this article, we are going to talk specifically about tweeters. (We’ll follow up soon with another article about midrange speakers and woofers.) A clear understanding of these concepts for all speaker sizes is crucial to proper car audio system design and installation.

As a caveat, we want to make it clear that directivity occurs with every type of speaker from every company at every price point. Inexpensive speakers are no different from those that cost thousands of dollars. For this test, we used a 1.5-inch audiophile-grade automotive tweeter. We choose this driver because we know it has a flat response and minimal distortion.

When we talk about speaker directivity, we need to compare the circumference of a speaker to a wavelength of sound. Wavelength is calculated by dividing the speed of sound (343 meters per second) by frequency. As an example, a 1 kHz tone has a wavelength of 34.3 centimeters or about 13.5 inches. A 40 hertz tone is 8.575 meters or 337.6 inches. The length of the pipes in a church organ is calculated using this wavelength information. The same holds for wind instruments like trombones or trumpets.

For speakers playing low frequencies relative to their circumference (and proportionately, their diameter), energy radiates forward, backward, sideways, up and down. You can think of this in the same way that light radiates from a candle. Candles aren’t brighter to the side or above. The light created by a candle is a point source that radiates outward and evenly in all directions.

At extremely high frequencies, sound radiates from the speaker similarly to light from a flashlight. If you are off to the side of a narrow-beam flashlight, you won’t be illuminated. For speakers, the same thing happens. Off to the side of a speaker, high-frequency information can be attenuated by 24 decibels or more compared to being directly in front of the speaker.

Speaker Diameter Affects Directivity

The directivity characteristics of a speaker depend on the size of the speaker cone or diaphragm. Keep in mind that the advertised “size” of a woofer or midrange doesn’t describe the diameter or circumference of the actual speaker cone. For example, a 6.5-inch speaker doesn’t have a cone with a diameter of 6.5 inches. It’s usually closer to five.

For our 1.5-inch tweeter, the diaphragm has a circumference of roughly 4.712 inches, which is the wavelength of 2.865 kHz tone. Each speaker has a unitless value known as ka. The ka value is the driver’s circumference divided by wavelength. Directivity can be described as multiples of ka. For our tweeter, ka is equal to 4.712 kHz; ka = 0.5 is 1.43 kHz; ka = 2 would be 5.7 kHz; and ka = 5 would be 14.3 kHz. Above a frequency where ka = 1, the speaker becomes increasingly directional. Below this frequency, sound radiates evenly in all directions — even behind the speaker.

Aim Tweeters
Approximation of Speaker Output at ka = 0.5.
Aim Tweeters
Approximation of Speaker Output at ka = 1.
Aim Tweeters
Approximation of Speaker Output at ka = 3.
Aim Tweeters
Approximation of Speaker Output at ka = 5.
Aim Tweeters
Approximation of Speaker Output at ka = 10.
Aim Tweeters
Approximation of Speaker Output at ka = 20.

The graphs above represent a generalization of how the output of a speaker changes as you move off-axis from being directly in front of the driver. As can be seen in ka values of 1 or less, you would hear almost as much of that frequency when standing behind a speaker as you would being directly in front of it. By the time ka = 3, you don’t hear anywhere near as much to the speaker’s side, and it only gets worse as frequency increases.

Directivity Testing

We set the tweeter up on a pedestal and took a series of measurements at 12-degree increments. The graph below shows how the tweeter output decreases at high frequencies as the listing angle increases.

Aim Tweeters
Frequency Response versus listening angle.

The red trace represents being directly in front of the speaker. Frequency response is within 5 dB from 1.5 kHz to above 20 kHz. Since we don’t have an anechoic chamber and are using windowed FFT measurements, these are adequately accurate results for this article.

The blue line has the microphone positioned 12 degrees to the side and directly on-center. At a meter, that’s a distance of only 20.9 centimeters or roughly 8.2 inches to the side. There are some minor changes in response up to 15 kHz of about 1 dB. At 20 kHz, the output has decreased by about five dB.

The dark green trace now has the microphone located 24 degrees off-axis. Overall output is down another dB or two between 3kHz and 15kHz, but the output at 20 kHz is down 13 dB. As we move farther and farther to the tweeter side, the output decreases more and more.

Think back to the math we did to calculate that ka = 1 frequency of 2.865 kHz. All the frequency response measurements are nearly identical at that frequency and below, and they start to separate more and more at multiples of that frequency. It’s almost like the math works!

Option 2 – The Tweeter Bounce

It’s not always physically easy to position a tweeter so it aims equally at the driver and passenger. One option in these instances is to install the tweeter near the base of the windshield and point it upward. The sound from the tweeter will bounce off the glass and radiate into the listening area.

While this sounds ideal, there are drawbacks. In this configuration, you effectively have two sound sources with different path lengths. This difference in path lengths will cause a certain amount of constructive and destructive interference called comb filtering.

The graph below shows the response of our audiophile tweeter at zero degrees in red, at 48 degrees in blue and measurement at 90 degrees off-axis in green. The fourth measurement is still at 90 degrees, but we have added a large piece of glass in front of the tweeter and angled it at 45 degrees. This last trace is in gray and shows us the measured response off of the glass.

Aim Tweeters
Measurements showing on and off-axis performance versus response reflected off a piece of glass.

Bouncing the tweeter output off our windshield analog, the response above 4 kHz is as good as if the tweeter were installed on-axis directly with the listening. But, unfortunately, everything comes with a price. We now have a dip of about 8 dB at 2.7 kHz. Yes, we could fix that with an equalizer, but that would require driving the tweeter with more than six times as much power around that frequency range. We could raise the crossover point to 3.5 kHz, but now we might have frequency response problems with the high-frequency information from the midrange speaker.

The Takeaway on Aiming Tweeters

If you want to hear all the music your stereo reproduces, then it would be ideal to be within plus or minus 15 degrees of on-axis with the tweeters in your car audio system. Any effort you might have put into reproducing the highest audio frequencies with better amplifiers or high-resolution audio players is lost if you are beyond that angle. You can also explore how your system behaves with the tweeters in the corners of the dash. You’ll sacrifice a bit of stage width and may have to deal with some frequency response issues at lower frequencies than sail panel locations, but it might require less fabrication.

We’d never argue that installers and technicians have different tuning and installation methods. With that said, and in spite of their best efforts, they can’t change the laws of physics. Choosing a tweeter location that has both of the tweeters pointed at the middle of the car between the driver and passenger’s head will ensure both can enjoy extended frequency response with good symmetry from both sides of the vehicle. Drop by your local specialty mobile enhancement retailer today to discuss how they can aim the tweeters in your car or truck for the best performance.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

A Look at Series and Parallel Subwoofer Wiring

Woofer Wiring

It seems do-it-yourself installers have taken a liking to our discussion about wiring multiple subwoofers to a single amplifier. The popularity makes sense, since many car audio enthusiasts aren’t familiar with series and parallel wiring. A question came up on Facebook a few weeks ago asking if it was better to wire a pair of dual voice coil subwoofers in series with their coils in parallel or vice versa. We thought it might be fun to turn that question into yet another experiment and dive deep into the options of series-parallel wiring.

Wiring Dual Voice Coil Subwoofers

Unless your installer has access to some very low impedance subwoofers, most installations will see the subwoofers you have purchased wired in parallel. For example, say you’ve chosen a pair of 10-inch subs with dual 4-ohm coils. In that case, your installer could wire all four coils in parallel to present a 1-ohm load to a monoblock subwoofer amplifier. What if you’re after a solution that will offer the best sound quality possible, and you’ve chosen a two-channel Class-AB amp to power your subwoofers? In most cases, these amplifiers want to see a 4-ohm load when bridged. It’s not difficult to wire a pair of dual 4-ohm subwoofers to present this load, but there are a couple of options.

Series the Coils’ Woofers on Each Driver, Parallel the Subwoofers

Your installer’s first option is to wire the voice coils on each subwoofer in series. For our dual 4-ohm subwoofers, this wiring configuration would add the voice coil impedance on each driver to produce a nominal 8-ohm load. Next, your installer would wire each subwoofer in parallel with your amplifier to create a 4-ohm load.

Woofer Wiring
A pair of dual-voice-coil subwoofers wired with their coils in series and the subwoofers wired in parallel to the amplifier.

Parallel Each Woofer’s Coils, Series the Subwoofers

The second option is to wire the voice coils on each subwoofer in parallel, then wire the two subwoofers in series with each other to the amp. Each subwoofer would have a net impedance of 2 ohms, and wiring those loads in series would present our amplifier with a 4-ohm load.

Woofer Wiring
A pair of dual-voice-coil subwoofers wired with their coils in series and the subwoofers wired in parallel to the amplifier.

However, our subwoofers aren’t resistors. We talked about the reactive characteristics of speakers and subwoofers not long ago in this article. Since we’re dealing with inductance and capacitance along with the resistance of the voice coil, is there a chance that the two wiring options present different results in terms of performance? Let’s see what happens!

Let’s Do a Test!

We have a pair of 10-inch subwoofers that we’ve meant to install into the sound system in our office. Yes, we need the ability to reproduce 25 Hz with authority while watching Cleetus McFarland, AvE, Project Farm and bigclivedotcom on YouTube. OK, maybe we don’t NEED it, but we want it. As we described in our examples above, the subwoofers have dual 4-ohm voice coils, so they’ll be perfect candidates for our experiment.

First, we measured the Thiele/Small parameters of one subwoofer using our new Clio Pocket 1 portable measuring system. Next, we measured the sub with its voice coils wired in series and then again with the coils wired in parallel to generate the data below.

Woofer Wiring

Not surprisingly, the mechanical characteristics like resonance frequency (Fs) and compliance (Vas) didn’t change. As we expected, the electrical measurements like DC resistance, electrical Q, and inductance (at 1 kHz) did change.

Electromechanical Series-Parallel Wiring Results

Next, we wired the subwoofers together in the configurations we showed in the two diagrams at the beginning of the article and repeated the measurements to see what, if anything, had changed.

We’ll start by saying that the differences are minimal. The reality is, the system will work just fine wired either way. With that said, there are signs that wiring the coils on each sub in series and wiring the subwoofers in parallel is slightly beneficial.

Woofer Wiring
C-S W-P, coils in series with woofers in parallel; C-P W-S, coils in parallel with woofers wired in series.

If you look at the chart above, the DC resistance of the C-S W-P configuration is a little lower, as is the driver’s total Q (Qts). A lower Q-factor can mean less resonance at Fs and a more accurate bass response.

Sometimes an experiment yields earth-shattering results. Other times, the outcome is subtler or less controversial. Most professional installers wire coils in series and those subwoofers in parallel. If you need a hand choosing suitable subwoofers for your car audio system or help in wiring them, drop by your local specialty mobile enhancement retailer today.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Understanding the Science Behind Automotive Headlight Bulb Colors

Headlight Color

When it comes to lighting the road in front of your car or truck at night, most enthusiasts focus on light intensity instead of headlight bulb color. It’s straightforward to see the difference between yellowish light produced by incandescent halogen bulbs and the white/blue output of HID or LED bulbs. The science behind these light sources is interestingly similar to what professional car audio technicians measure to calibrate a digital signal processor in your mobile audio system. If you’re intrigued, read on, and we’ll explain in detail.

How Light Works

There have been many detailed scientific dissertations on how light works. These papers explain the electron and sub-electron concepts that allow us to see objects. In short, light is made of photons. Photons are packets of electrons that have been released from atoms. These packets of photons have energy and momentum but have no mass. This means you can shine a light at an object to illuminate it, but the energy from the light source doesn’t make the object heavier.

If we excite a group of atoms, the negatively charged electrons that orbit the nucleus absorb that energy. As more energy is added to an atom, the electrons circle faster and farther away from the center. When the energy source (electricity or heat) is removed, the electrons snap back to their original orbit path but release that added energy in the form of photons. Under specific conditions, the photons that are released produce visible light. If you studied electrical theory in high school, you’d recognize this pattern as similar to how electricity works. The only difference is that electricity involves electrons jumping from one atom to another to transfer energy.

When the light photons escape from an atom, they can have varying energy levels depending on the electron’s position when it leaves the atom. You can think of this as the photons having a specific resonant frequency. As a result, different types of atoms release photons of different wavelengths. The result is differently colored light sources.

Light and Color

We know that light sources have different colors. An incandescent bulb gives off a very different kind of light than a fluorescent bulb, a gas-discharge arc lamp (high-intensity discharge or HID) or a light-emitting diode (LED). Some light sources appear yellow, while others are white or blue. How these light sources illuminate objects can make them look very different.

Let’s take a giant step sideways. You’ve seen plenty of rainbows, but do you know what turns the supposedly white light from the sun into a color pattern that shifts from violet through to blue, green, yellow, orange and red? Water molecules refract the light from the sun. Because white light is made up of many different wavelengths, and each is reflected at a different angle as it passes through the water molecules, the light is divided into its primary components. Sorry, I know. We got all technical again.

Headlight Color
Our friend Jeremy Lambertson from Driven SS in Marquette, Michigan, and his wife, Carrie, snapped this photo of a rainbow after a Cars and Coffee event.

An expensive-for-its-size electronic device called a spectral illuminance analyzer or a spectrometer can analyze the frequency content of a light source. The spectrometer works precisely the same way that a real-time audio analyzer (RTA) looks at the amplitude of the different sound frequencies produced by an audio source. As you may have guessed, we’ve added one to the BestCarAudio.com lab.

Headlight Color
An audio analyzer like the venerable AudioControl SA-3052 will show a user the relative loudness of each 1/3-octave band of frequencies across the range of human hearing.
Headlight Color
Our spectrometer shows us how much energy is contained at the different wavelengths from a light source.
Headlight Color
The view when we took the light measurement posted above.
Headlight Color
Spectrographic analysis on a bright sunny day with the sun almost at its highest point in the sky.
Headlight Color
The view during our measurement of a bright sunny day with very few clouds in the sky.

If you compare the two spectrographic measurements, you can see that the water vapor in the clouds is blocking increasing amounts of green, yellow, orange and red light. Unsurprisingly, we are left with a light source that makes everything look dull. This is because the water vapor in the air has quite literally filtered out the light energy that makes colors pop.

The software scales the measurement window to make it easy to see energy levels at different wavelengths. This is similar to the way our eyes or the iris and shutter on a camera work together to deliver a similar level of perceived brightness for a given lighting condition. The chart below shows both measurements overlaid, one on top of the other. You can see that the overall brightness level on a cloudy day is significantly lower.

The measured light level was 106,252 lux on a sunny day, whereas the cloudy day was only 9,069 lux. Converted to candlepower, the numbers are 9,874 and 843.

Headlight Color
A comparison of energy levels between a sunny and a cloudy day in Southern Ontario.

Headlight Bulb Color

When it comes to the headlights on your car or truck, bulbs come in various colors for a variety of reasons. At the incandescent end of the spectrum, most have a yellowish look. With that said, halogen bulbs (which use iodine and bromine gas) have less yellow and produce more light output than old bulbs that use argon. Here’s the spectrographic analysis of a relatively simple halogen light bulb.

Headlight Color
Spectrographic analysis of a Wagner 1156 turn signal bulb.

As you can see, there is a lot of energy in the red portion of the light spectrum produced by this bulb. To be clear, it’s not an amber bulb, though; we should find one of those and test it as well.

Headlight Color
Our Wagner 1157 is a classic incandescent bulb that produces warm yellow light.

OK, we’re back from the hardware store with a pair of Sylvania 3057AK amber turn signal bulbs. The graph below shows their spectral energy.

Headlight Color
A Sylvania 3057AK has a dark amber coating. The amount of blue light passed from the filament is dramatically reduced.

How we perceive the color of a light source is dependent on the frequency content of the energy coming from the bulb. Warm light will have more red energy, where a cool bulb will be bluer.

Color Temperature and Color Space

If you’ve ever shopped for HID headlight bulbs, you know their color is often described by a specific Kelvin value. For example, a yellow fog light bulb might be rated at 3,000 K, where a factory-installed HID or LED bulb might be a very pure white rated at 6,000 K. Those bulbs with a very blue tint are often up in the 8,000-10,000 K range.

Most people think these values are somewhat arbitrary, but the reality is, the light color can be measured with impressive accuracy using the right equipment. Our spectrometer can do this quickly and easily. The software will also plot the measurement on what’s called a color space chart. The chart outlines the level of red, green and blue in the light source and uses X and Y coordinates to describe the location on a chart. For our testing, we’ll use the CIE 1931 color space chart. The image below shows us where our measurement of the Wagner bulb falls.

Headlight Color
Our Wagner bulb measurement yielded an X value of 0.4246 and a Y value of 0.3985.
Headlight Color
The Sylvania bulb measured at 0.5590 for an X-value and 0.4305 for a Y-value.

The software tells us the Wagner light source has a correlated color temperature of 3,174 kelvins. As mentioned, that’s considered a warm yellowish light. The amber Sylvania bulb has a color temperature of 1,857 and falls into the orange and red portion of the light spectrum.

White Light Isn’t Always Made Up Of All Frequencies

The last item we’ll touch on in this article is a bit of a tease toward some future content we are working on. If you’re reading this, then you’re likely looking at a computer or smartphone screen. The light created by that screen is made up of tiny red, green and blue pixels. The colors you see depend on the intensity of each of those pixels. If the screen is to be blue, then only the blue pixels will be illuminated. For violet, the red and blue will be turned on. Yellow is produced by red and green. You can easily see this pattern by looking at the CIE 1931 color space images above.

What might be surprising to some is that the perception of white can be made up of specific amounts of red, green and blue light. The chart below shows a measurement of the light produced by the laptop screen on which this article was created.

Headlight Color
The spectrographic content of our laptop screen with an all-white image.

Behold! Our Dell XPS 13 laptop screen is perceived as white, yet it’s primarily red, very light green and mostly blue light. Here’s how the white light it produces measures on the CIE 1931 chart.

Headlight Color
The white light produced by our laptop screen was measured with an X value of 0.3095 and a Y value of 0.3310.

Our screen has a correlated color temperature of 6,662 K. If we were scoring it on even whiteness, that’d be an excellent result. But does this score mean it’s a perfect source of white light? Absolutely not! We’ll leave you to ponder that thought as we prepare the next few articles.

Lead-in Image: Thanks to Josh Matthews for sharing this photo of an Acura RSX equipped with decidedly blue headlights.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Lighting, RESOURCE LIBRARY

What Is the Big Three Electrical Upgrade?

Big Three

We were recently at an event that was hosting a mobile audio system SPL competition. If you aren’t familiar with this sort of thing, it’s a contest to see who has the loudest stereo. We aren’t talking about cranking the dial on the factory radio. Instead, some of these folks build steel and concrete reinforced subwoofer enclosures and feed tens of thousands of watts to their subwoofers.

As you can imagine, delivering that much power requires significant electrical system upgrades. Many of these creations have multiple alternators and huge banks of batteries. If you’ve upgraded your car or truck with an amplifier that can produce hundreds of watts to your speakers, there’s a wiring upgrade called the Big Three that can improve the efficiency of your electrical system. Let’s look at what this upgrade is and why it’s a great starting point for a high-power car audio system.

How Automotive Charging Systems Work

The first thing you need to know about delivering power to your amplifier is that most of the energy will come from your alternator, not the battery. The battery is there to start the car. Once a vehicle is started, the alternator, which is mechanically driven by the engine, provides power to replenish the battery for the next start. The alternator also runs the computers, ignition system, fans and lights in your vehicle. Once you’ve started the vehicle, you could remove the battery and everything would, under normal conditions, operate just fine.

This scenario changes if you add a high-power amplifier to your vehicle. Say you have a 1,000-watt amplifier and you want to deliver that full amount of power to a few high-power subwoofers. At 13.8 volts, most amplifiers of this type will consume about 100 amps of current. If you have the engine running, headlights on and a climate control system in operation, your car or truck may be using 30 or 40 amps of current to power those systems. If the alternator is only rated to produce 80 amps, there certainly won’t be 100 amps left for your stereo.

The additional current the amplifier wants will come from the battery, albeit at a lower voltage. You will likely find that an amplifier rated for 1,000 watts at 14.4 volts can only produce about 800 watts at 12 volts without clipping the output signal and adding significant distortion.

Big Three
When upgrading, make sure the retailer working on your car or truck uses all-copper, full AWG-spec power and ground cables like those from Rockford Fosgate.

How To Make the Most of Your Alternator

The first step in optimizing the electrical system in a car or truck is to reduce waste. In this case, waste is the power converted to heat because of resistance in cables and connections. First, have a look at your alternator and battery. How large are the wires running to and from them? Unless you have a big truck with a high-output alternator, chances are that the wiring is 4 or maybe even as small as 6-AWG.

Big Three
Aftermarket alternators like those from Ohio Generator can produce over 350 amps of current. They are going to need significant wiring to supply large amplifiers.
Big Three
Is a single run of 0-AWG power cable enough for almost 400 amps of current from a Singer alternator? Likely not.

Please make no mistake about it, the company that built your car or truck deliberately chose the smallest, lightest and least expensive wire that would allow the vehicle to function reliably. They had no intention of providing conductors that could handle two to three times what the alternator was rated for.

The Wiring Upgrades that Make the Difference

The Big Three upgrade involves adding to or replacing the existing conductors with larger, high-quality wires. The upgrades in the Big Three are:

  • The run from the alternator chassis to the negative terminal of the battery.
  • The run from the output of the alternator to the positive terminal of the battery.
  • The ground connection from the negative terminal of the battery to the chassis of the vehicle.
Big Three
A representation of the wires that need upgrading to complete the Big Three.
Big Three
It’s not unreasonable to run multiple cables to the alternator to optimize power delivery to numerous electrical systems.

Depending on your vehicle, there may be other wires that can be upgraded at the same time. For example, if there is a main power distribution box under the hood, running new wire to it can help provide more voltage to the factory-installed electrical and electronic components in your vehicle.

Big Three
Two runs of 4-AWG power wires feed the factory fuse block in this Jeep Grand Cherokee.

Another upgrade you may want to make at the same time is replacing the battery terminals. Some factory-installed terminals are notoriously flimsy. If you’re demanding significant current from the battery, then optimizing each component along the way only makes sense.

Big Three
Stamped steel battery terminals don’t provide much room for upgrade.
Big Three
High-quality plated brass terminals like these from Audison Connection allow your installer to maximize current transfer from the battery.

Is the Big Three Enough?

In 2012, we wrote an article about upgrading the stock electrical system wiring in modern cars and trucks. Even though it was a decade ago, new vehicles at the time were being constructed out of materials like QuietSteel and aluminum, and some companies had started using adhesives instead of spot welds to bond unibody panels together. All of these advances in vehicle assembly work against our desire to deliver large amounts of current to an amplifier, especially when we want to use the body as the ground return path.

Power delivery from the positive terminal of the alternator is as important as the ground connection to the chassis and battery. If the current can’t flow through both, you are wasting energy by transforming it into heat. Upgrading and adding grounds with the Big Three is a start. If you are serious about optimizing your electrical system, then you’ll want to add a ground wire from the battery or alternator directly to your amplifier. Back in 2012, we called this the Big Four.

Big Three
Having a ground wire run from the battery or alternator to the ground location of your amplifier can dramatically improve current flow.

Full disclosure: This wasn’t our idea. The first we heard of running a dedicated ground wire was when we were checking out Precision Power’s fleet of Chevrolet Suburban demo vehicles back in the ’90s. The topic came up again when Ford introduced QuietSteel in the F-150 vehicles, and companies were having problems with amplifiers failing because of low voltages. As a solution, JL Audio suggested adding what they called a parallel ground. This wire would connect to a conventional ground point in the rear of the vehicle and run to the battery’s negative terminal or the alternator. A benefit of the parallel ground is that it offers less resistance than a dedicated ground wire or using the chassis. As a result, current can flow through both paths, reducing the voltage drop and improving system performance.

Optimize Your Vehicle Electrical System

If you’ve purchased a high-power amplifier for your vehicle, talk to your local specialty mobile enhancement retailer about upgrading all the wiring in the electrical system. Implementing an upgrade like the Big Three or, better yet, the Big Four will allow the amplifier to produce more power and allow the system to play louder with improved reliability and efficiency.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Let’s Talk About Remote Starter and Security System Range

Remote Range

Range is the critical factor in the quality and performance of a remote car starter or security system. That’s the distance between you and your vehicle when you’re sending a lock, unlock or remote start command, or are hoping to receive a security notification. If you aren’t close enough, or the convenience system doesn’t have enough power, signals may not reach the vehicle or the remote.

Remote Starter and Security System Key Fobs

The handheld remote that comes with your vehicle or an aftermarket starter uses radio frequency communication to transmit commands. These work in a similar fashion to a radio station in that they broadcast in a circular pattern from the remote. If your vehicle is close enough and the signal is strong enough, the receiver in the car or truck will relay the command to the control module and execute the function.

Let’s look at two-way remote controls. A two-way remote sends a command such as “unlock” to the vehicle when you press the button. When the command has been received and the doors are unlocked, the transceiver in the car sends a command back to your remote to let you know the request was executed. The benefit of this two-way communication is that you always know the status of your car or truck. There’s no need to guess whether the doors are locked or the engine is running.

Remote Range
Two-way remotes like the new Compustar R5 allow security warnings from the car or truck to alert you when something is wrong.

How Do Remote Car Starter Companies Define Range?

No matter which brand of convenience or security system you’ve chosen, they all try to describe the distance between the vehicle and the remote in a measurable range. The simplest aftermarket remotes usually offer about 1,000 feet (about 300 meters) of range under ideal conditions. The step-up systems provide solutions that work at ¼ mile, 3,000 feet (914 meters) or 1 mile (1.61 kilometers). Some companies offer ultra-long-range radio frequency remotes that can deliver 2 or even 3 miles of range.

All manufacturers of remote start systems calculate these distances based on ideal controlled conditions. With trees, houses or buildings between you and the vehicle, the maximum functional range will decrease dramatically. If you’re inside a building (apartment, office tower, factory, hospital, etc.), that will decrease the effective range. A lot of electrical interference from communication systems will also reduce the usable range. We’ve seen cases where a specific remote solution worked great in one city but barely worked at all in another because a nearby military base was broadcasting something in the same frequency range.

To compare remotes, consider their power levels. The simplest 1,000-foot models could be your distance benchmark. A remote that offers 3,000 feet of range isn’t just three times more powerful; it’s closer to eight times as powerful. Because the signal radiates in a circular pattern, the power level needs to be about four times stronger to double the distance. That would mean a transmitter needs to be 16 times stronger to quadruple the effective distance. So, a remote that offers 1 mile of range is just over 25 times more powerful than one that only provides 1,000 feet of functionality. The 2-mile remotes are 100 times more powerful than the 1,000-foot models, and 3-mile units are an amazing 223 times more powerful.

Manufacturers of remote start and security systems work to increase range in other ways. The first is to switch from amplitude modulation (AM) signal to frequency modulation (FM). As you may have noticed on your car radio, FM offers better noise rejection than AM. The second method to improve range is to use what’s known as frequency-hopping or spread-spectrum communication. A simple way to understand this is to think of spread-spectrum systems as a group of people yelling a command rather than a single person. If there is noise interfering with one person yelling, the message from one of the other people is still likely to get through.

Remote Range
AM, FM and digital spread spectrum (DSS) communication technologies vary in their ability to send a command to the brain of your starter or security system.

Why Is Remote Range Important?

If you park your car in the driveway of your house and want to start it before work, you don’t need much range. A 1,000-foot system will likely be more than adequate. If you’re in an apartment on the fourth or fifth floor and the car is parked below you, the same applies. However, if you live on the other side of that apartment building, you’ll need to send a much stronger signal.

Think, too, about where you work. Do you work in a small office where your car is parked outside the window? If so, 1,000 feet is lots of transmitting strength. What if you work in a hospital, a distribution warehouse or a manufacturing facility and your car is 1,500 to 2,000 feet away? There may also be mechanical and electronic equipment along with the metal structure of the building between you and the vehicle. You may need 20 or 50 times as strong of a signal to let you start the car.

Logically and not incorrectly, you could wait until you were at the door to the parking lot to start your car and let the air conditioning run in the summer or get the heater working in the winter. However, if it’s the latter, the car won’t warm up much in the two or three minutes it takes to walk across the parking lot. The whole purpose of a convenience system is to make the vehicle more comfortable when it’s time to drive away.

If you have a security system or security features tied into a remote starter, you can receive warnings from the alarm portion of the system on some premium two-way remotes. If you’ve parked your car or truck at a big shopping mall, it’s not unreasonable that you’d be more than a quarter-mile away. With that said, the ¼-mile system isn’t going to work with concrete and steel walls, dozens of stores and hundreds of people on their cell phones between you and your vehicle. Transmitter power is fundamental here – both from the remote and from the transceiver in the vehicle.

A Quick Test of Remote Starter Range

To quantify some of the range claims, we headed to a local light-industrial area to test how far away we could be and still receive a reliable confirmation that a command from our remote worked. The first system featured a two-way remote control with a color display that’s marketed as offering 1 mile of range. We used the infamous remote-to-chin trick (which turns your head into an antenna) to maximize performance, and we were able to get the system to function at a distance of 2,000 feet (615 meters).

The second system features a one-button remote with LED confirmation. It’s listed as providing up to 2 miles (3.2 kilometers) of range. We managed an impressive 1.11 miles (1.78 kilometers) in our urban test scenario. Just as a note, the battery in this remote was a year old, so there is a slight chance we could have bettered that number.

Nevertheless, the real-world numbers in this test came in at 38% and 55% of the maximum the companies use in their marketing. Given the caveats of interference, these aren’t surprising. If we were in a remote part of Texas or Saskatchewan with flat terrain with no trees, cell service, radio stations or buildings, we’d have no problem believing that these systems would deliver every inch of their ratings.

Remote Range
How far away from our cars did the remotes work in the city’s light commercial area?

We took the long-range system to a local shopping mall for a second test and parked at the very southwestern corner of the parking lot. We parked facing the door and in line with the long center hallway in the mall. This positioning would provide a best-case scenario in terms of range.

The first test was to check out the factory keyless entry system. As we walked through the parking lot, we pressed the lock button. At a distance of 195 feet (60 meters), we had to turn around and face the car for it to respond. This continued to work right up to the door of the mall at 290 feet (88 meters). The vehicle continued to react once we were through the first set of doors but not after the second. So, we’ll call that about 300 feet (100 meters) of range.

We switched to the one-button two-way LED remote that’s marketed as offering 2 miles (3.2 kilometers) of range. We continued in a straight line down the mall’s main corridor into the large department store at the end. Just as we passed the perfume section a quarter of the way through that store, we ran out of range. That’s a total of 1,400 feet (427 meters).

Given the line-of-sight benefit, we decided to stray off down a few of the side corridors. A little to the north, with a few dozen more stores in the way, the range was down to 920 feet (280 meters). Farther west of that, with even more stores between us and the car, the range was down to 740 feet (225 meters).

At no time were we disappointed with the test. It was amazing to see just how far we could get and the types of interference that reduced the effective range. On the other hand, it was no surprise to see how poorly the factory remote fob worked.

Remote Range
Being in a building dramatically reduces the range of your remote car starter or security system remote.

What Do You Need To Know About Remote Range?

Just as with some of the overzealous power ratings on speakers and amplifiers we see, using the longest range possible in marketing information is just a part of reality when it comes to the performance of remote starter, security and convenience systems.

When buying a remote car starter or security system for your car or truck, think about the worst-case scenario in terms of how much transmitting power you’ll need. We’ve heard of people starting their vehicles from a monorail when more than a station away from their stop or while flying into a small airport in a small commuter plane.

If you want your vehicle to be comfortable and ready to go when you are, extra power from the car starter or security system remote will give you more warm-up/cool-down time. Drop by your local specialty mobile enhancement retailer today to find out about the security and convenience solutions available for your vehicle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Remote Car Starters, RESOURCE LIBRARY

  • « Previous Page
  • 1
  • …
  • 20
  • 21
  • 22
  • 23
  • 24
  • …
  • 104
  • Next Page »

Recent Articles

Compustar 2WG17 Remote Kit

Product Spotlight: Compustar 2WG17 Remote Kit

May 19, 2025 

Compustar was one of the first brands to allow consumers to choose a remote control package to accompany their remote start controller. Previously, we looked at flagship-level … [Read More...]

A picture of a orchestra with a sound graph on top of it

The Four Stages of High-End Car Audio – Frequency Response

May 18, 2025 

Listening to a genuinely high-end home or car audio system can be amazing. For those who care about sound quality, several technical considerations separate a very good audio … [Read More...]

Rockford Fosgate TMS69

Product Spotlight: Rockford Fosgate TMS69

May 12, 2025 

Where once the domain of only a few specialty brands, motorcycle audio speakers are now available from dozens of brands. Unfortunately, that doesn’t mean all the offerings sound … [Read More...]

The back of a car audio subwoofer on one side and a man with a perplexed thinking face looking at it on the other side

Car Audio Myths: DVC Subwoofers Can Handle More Power

May 11, 2025 

We’re back to bust another car audio myth wide open. This article will discuss the myth that DVC subwoofers can handle more power than a single voice coil driver. After some … [Read More...]

Various car audio amplifiers, speakers, and equipment

Car Audio Myth: You Can’t Hear Low-Frequency Distortion

May 4, 2025 

At least once a week, someone comments on social media or in a forum that you can’t hear low-frequency distortion from subwoofers or amplifiers. We have no idea where this myth … [Read More...]

Customer Reviews

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Quakertown Showroom and Installation Facility


Get Directions to Clear Vibrations

Hours

Monday9:00 AM - 5:00 PM
Tuesday9:00 AM - 5:00 PM
Wednesday9:00 AM - 5:00 PM
Thursday9:00 AM - 5:00 PM
Friday9:00 AM - 5:00 PM
SaturdayClosed
SundayClosed

Services

  • Car Audio
  • Custom Installation
  • Fleet Services
  • Driver Safety
  • Remote Car Starters

Connect With Us

  • Facebook
  • Instagram
  • Twitter
  • YouTube

Copyright © 2025 Clear Vibrations · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...