Clear Vibrations

Quakertown, PA's Mobile Enhancement Headquarters

550 California Road Suite 7
Quakertown, PA 18951
267-227-3875
  • Home
  • Services
    • Car Audio
    • Custom Installation
    • Driver Safety
    • Fleet Services
    • Remote Car Starters
  • About Us
    • Work for Clear Vibrations
  • Reviews
  • Location
  • Contact Us
  • Facebook
  • Instagram
  • Twitter
  • YouTube

How Much Power Does a Car Radio Really Make?

Radio Power

For as long as I can remember, car radios have had their “maximum power” ratings all over their packaging and often right on the face of the radio. These numbers are not only useless in terms of an ability to reproduce music with any sense of quality, but I have always questioned whether they are even possible. Let’s measure how much power a conventional car audio head unit can produce.

Car Audio Head Unit Amplifiers

Most car audio source units use an all-in-one four-channel amplifier integrated circuit (IC) to power the speakers in the vehicle. These ICs are typically driven directly by the supply voltage to radio with something on the order of 12 to 13.5 volts.

Radio Power
The typical four-channel amplifier IC used in car radios

Some quick research shows that these units have a “power rating” of 50 watts by four. As a reader of BestCarAudio.com, you know supply voltage and distortion measurements are critical in quantifying a power measurement. The spec sheet for these little amps includes that information. Many are rated at 50 watts by four at 10% THD when powered with 15 volts. If ever there was a “that’s not useful” specification, this would be it.

When comparing car audio amplifier power measurements, the ANSI/CTA-2006-C standard defines the maximum noise and harmonic distortion to be equal to or less than 1%. Second, we use a maximum supply voltage of 14.4 volts – even if that number is a bit optimistic.

Radio Power
Power output specifications from the datasheet of a typical car radio amplifier IC

Is a Rating of 50 Watts per Channel Possible?

You might not know it, but 10% distortion from an amplifier playing a pure test tone starts to look a lot like a square wave. Let’s assume there is very little voltage loss due to the components in these amplifier ICs, then do some basic math. To calculate power, we square the voltage across a load, then multiply that number by the load’s impedance. As such, 15 times 15 is 225. Dividing 225 by four gives us 56.25. If the amp could produce a pure square wave, it could produce 50 watts of power.

Let’s back things down to something realistic and consider what power that amp might make if the output waveform was a sinusoidal signal. To convert a square wave to a sine wave, we divide it by the square root of 2. In our theoretical “perfect efficiency” amp example, we now have an output voltage of 10.6 volts, which the math says is 28 watts per channel.

Let’s back this down to a more reasonable test voltage of 13.2 volts – something we might see while driving in an average, everyday car or truck. Our amp IC can now theoretically produce 21.78 watts.

If we dig back into the datasheets for a real amplifier IC, we see that they have a rating of 20 watts per channel with 1% THD when supplied with 14.4 volts. It almost makes sense.

Why Worry About Head Unit Power Ratings?

I’ve seen many instances of car audio enthusiasts asking how to upgrade their sound systems. One of the first suggestions is to purchase new speakers and an external amplifier. Many compact four-channel amplifiers will fit in a dash, under a seat or in the center console of a car or truck. These amplifiers are typically rated to produce 45 to 50 watts per channel. On many occasions, I’ve witnessed ill-informed owners state that this power rating is the same as their head unit. This statement is incorrect because the numbers aren’t stated with the same supply voltage and distortion ratings. If we want to use Maximum Power head unit ratings, these compact amplifiers would produce around 100 watts per channel. Nevertheless, we don’t deal in inflated numbers.

Testing Power from a Car Audio Source Unit

I dug through the cupboards in my lab to see if I had an older source unit and found a high-quality marine radio from around 2010. Let’s set this up on the BestCarAudio.com test bench to see what it’s capable of in terms of power production.

I created a test disc with various 1 kHz test tones in hopes of hitting an output level that contained exactly 1% total harmonic distortion and noise. Yes, a compact disc. Do you remember those round discs that store data? To keep the test simple and reliable, I will only drive one 4-ohm load during the test as I don’t want to overheat anything or damage this “vintage” piece of car audio history. Hahaha. Nevertheless, the disc has 40, 30-second long 1 kHz sine wave test tracks recorded at 0 to -4.0 dB FS in -0.1 dB increments. Yeah, this took a moment to create. Driving only one channel will allow me to use my small variable-voltage power supply to see how different supply voltages affect maximum power production.

Radio Power
The audio output waveform from our classic marine CD player when supplied with 12.0 volts
Radio Power
Spectral analysis of the output waveform of our CD player when supplied with 12.0 volts

The graphs above show how a single channel behaved when driven to an output level as close as I could get to 1% THD+N. The deck produced a waveform with a 7.16 volts RMS amplitude at this level. That works out to 12.81 watts. That’s most certainly not 20 or 45 watts.

Just so you know what you’re looking at on the waveform (oscilloscope), the yellow and teal traces are the voltages on the positive and negative speaker wires. The violet trace is the sum of those voltages calculated by the scope. This is what the speaker “sees” in terms of power.

Let’s up the supply voltage to the same level we’d use on a good quality car audio amplifier to see what happens.

Radio Power
The audio output waveform from our classic marine CD player when supplied with 14.4 volts
Radio Power
Spectral analysis of the output waveform of our CD player when supplied with 14.4 volts

At 14.4 volts, the output has increased to 8.66 volts RMS, which works out to 18.75 watts. This is now getting into the realm of the 22-watts-per-channel rating. Can we get closer by supplying it with 15 volts?

Radio Power
The audio output waveform from our classic marine CD player when supplied with 15 volts
Radio Power
Spectral analysis of the output waveform of our CD player when supplied with 15 volts

Supplying the deck with 15 volts resulted in an output of 8.99 volts RMS, which works out to 20.2 watts.

And In Today’s News, 20 Watts Isn’t 50 Watts

Over the years, I’ve tested dozens, if not hundreds, of source units. Most don’t make 20 watts of power per channel – they are typically between 14 and 17 watts.

Where am I going with this information? I want it to be clear to those wishing to upgrade their car audio systems that even a 45-watt-per-channel compact amplifier would be a significant upgrade over the power available from a head unit. For head unit manufacturers, please stop printing 45Wx4 on the packaging. It just isn’t a realistic rating.

Genuine High-Power Head Units

Before I wrap up, I have to note that some source unit manufacturers have gone the extra mile by including a small switching power supply and a high-power Class D amplifier in their source units. These radios can produce around 45 watts of power per channel using standard CTA-2006-C compliant distortion and supply voltage specifications. You’ll know when you’re talking about these radios because their installation requires running a larger-than-normal power and ground wire to a high-current power source in the vehicle. These decks usually include that 100-watt-per-channel rating I mentioned earlier.

Upgrade Your Head Unit for Better Sound

If you have a typical car audio source unit that makes around 15 to 18 watts of power per channel, upgrading your stereo system with a high-performance amplifier can dramatically improve both output capability and sound quality. Drop by your local specialty mobile enhancement retailer today to find out about the options available for your vehicle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Caring for Your Car Audio Touchscreen

Touchscreen Care

The most popular car radio upgrades these days include a touchscreen. Multimedia receivers with Android Auto and Apple CarPlay are a great way to make communicating safer while driving. When it comes time to clean your car or truck’s interior, here are a few things to keep in mind to ensure that the display on your car radio will look great for years.

Cleaning Touchscreen Radios and Overhead Monitors

It shouldn’t be surprising that touchscreen radios will get some fingerprints on them. Most of us have naturally oily skin. When we touch the plastic screen, we leave marks that can make reading the information on the display more difficult in bright sunlight. You may also need to deal with the occasional splash of coffee or droplets from a sneeze. Using the proper process and cleaning products is essential to prevent damage to the fragile anti-glare coating.

Many of us are accustomed to the toughness and durability of the glass screens on our smartphones. We can wipe them on a shirt or pant leg with minimal risk of damage. Your car radio, an overhead monitor or headrest monitor isn’t anywhere as durable. The plastic overlay on top of the glass screen in your vehicle typically has a slightly frosted anti-glare coating. This coating helps diffuse light and makes it easier to see information on the display behind it. To put things into perspective, some of these coatings can be scratched or scuffed by a sharp fingernail.

Touchscreen Care
The ($2,700) factory-installed display in this Hyundai Genesis has been damaged by using the wrong cleaning products.

Touchscreen Display Cleaning Products

When it’s time to clean the display on the radio in your car, the first thing you’ll need is a microfiber cloth. If you want to be 100% fanatical (like us), we recommend a cloth that’s been used and washed once as the fibers are matted down a little bit. Further, when you wash microfiber cloths, do not use fabric softener. A laundry detergent like Purex Free and Clear or an application-specific product like Chemical Guys’ MicroFiber Wash or P&S Rags to Riches is better. Tumble dry the cloths on a low or no-heat setting that won’t melt the fibers. If you get the feeling we do as much research into automotive detailing as car audio, you are 100% correct.

Next, you need something to cut through the grease, oils or coffee. We’ve had excellent success with a product called Woosh! Screen Shine. That said, distilled water (which is free of minerals) is often adequate for day-to-day maintenance. A few drops of vinegar in distilled water will give it extra grease-cutting power. The same goes for a drop of dish soap like Dawn. If you are shopping for a “screen cleaner,” make sure it says it’s 100% compatible with plastic displays and that it’s not designed specifically for the glass screens of tablets and smartphones.

Spray the Cloth, Not the Screen!

One of the most important things to know when cleaning any display, be it on your car radio, your flat-screen television, a computer monitor or even a smartphone, is to avoid soaking the display. Do not spray the cleaner on the display – spray the cloth. You don’t need anything soaking wet. No liquid should be running down the screen with the potential of getting into the electronics and circuitry below. Water and liquid damage are never covered under the manufacturer’s warranty. Nor are scratches on the display from improper care and maintenance.

If you’re a detailer, don’t use steam on or around the screen. That’s a LOT of moisture that can infiltrate the display and cause permanent damage.

Give the microfiber cloth a spray (preferably outside the vehicle) and wipe the screen lightly. Resistive-style touchscreens move slightly to make contact with a second layer. You don’t want to dent, crush, nick or scratch the display membrane. If something stubborn is on the screen, reapply your cleaner (on the cloth) and continue to rub gently. Pressure is bad.

Touchscreen Care
Spray the cloth outside the vehicle, then wipe the screen.

What Not to Use on Car Screens

In terms of wiping the screen, never use a paper towel, newspaper or even facial tissue (Kleenex). You should also avoid cotton rags and waffle-weave clothes – even though they can be great for cleaning glass windows. The fibers used in these materials can scratch the screen.

Do not use strong chemicals like alcohol, Windex or other glass cleaners or degreasers, especially those with ammonia. Even lens cleaning wipes for your glasses can be too strong. These products can strip the anti-glare coating off of a screen very quickly. The only way to undo this damage is to have the screen replaced – and that’s a costly component. Most aftermarket replacement displays cost between $100 and $300, but some new high-resolution displays can be even more. This price doesn’t include the labor to remove the radio, ship it somewhere to be repaired and pay for the time to do the swap. Even a quick swipe with the wrong product or materials can end up being a $500-600 mistake.

Touchscreen Care
Don’t use paper towels to clean the screen of your car radio.

Tips for The Obsessives

If there is dust or debris around the edge of a recessed display, a soft makeup brush from the dollar store is a good way to get rid of it. If the brush has a metal band that holds the bristles in place, wrap it with cloth tape so you won’t damage the plastic trim pieces. You can also use compressed air to clean dust out of the corners. A quick blast before wiping the screen can blow away anything that might cause scratches. If you have kids who like to snack in the car, then you know what we’re talking about. Those cookie and cracker crumbs seem to end up everywhere!

Touchscreen Care
A soft makeup brush is perfect for getting into the tight corners around a radio display.

Take Care of Your Car Radio

We expect few folks put this much thought into keeping the display on their car radio looking good. Being overly obsessive about even the most minute details is our thing! If fingerprints are on your radio, we hope this guide will help you clean them off quickly and efficiently while ensuring that your radio will continue to function superbly for many years. If you’re considering upgrading the stereo system in your vehicle, drop by a local specialty mobile enhancement retailer to find out about the available options.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Car Audio Equipment Distortion Harmonics Add Unwanted Information

Audio Distortion

We’ve talked about audio component and speaker distortion a great deal. The reason for this is that distortion is one of the critical factors in quantifying the quality of an audio system. Components that add a lot of distortion take away from the realism of the listening experience, making the music blurred, muddy and unnatural. This article will follow an audio signal through the typical car audio system, from the source unit to the speakers’ output, to explain how unwanted information is added to your music. We aim to emphasize the importance of choosing high-quality audio components at every stage to get the most from your stereo upgrade.

As our virtual audio test source, let’s imagine an audio track with three sine waves. The first is at 50 Hz, the second at 1 kHz and the third at 5 kHz. I’ve chosen this approach so you’ll be able to “see” how things change as we work through the system.

Audio Distortion
Frequency response of our three-tone virtual test track with content at 50, 1,000 and 5,000 hertz.

As you can see above, we have three unique peaks with little to nothing between them. This is as pure as our audio signal will ever be. The sine waves are “recorded” at -10 dB FS, so we should have enough room to add harmonics without clipping the signal.

The System: Source Unit, DSP, Amplifiers and Speakers

For this example, we’ll use a typical consumer-grade source unit from a name-brand company like Sony, Kenwood, Alpine or Pioneer. These radios typically add about 0.1% distortion on the preamp output unless they are a premium Mobile ES or eXcelon XR model. This rating of 0.1% means that for every piece of frequency content, information is added at a level of -60 dB at different harmonics. Most radios I’ve tested add second-order harmonics at this level, so to keep the example simple, we’ll only consider that.

Audio Distortion
Extra harmonic information added to a 1 kHz audio signal by a typical consumer-grade multimedia source unit.

So, let’s add second-order harmonics to our test track. The third harmonic of 50 hertz is 150 hertz. The third of 1 kHz is 3 kHz, and the third of 5 kHz is 15 kHz. So, we’ll add sine waves at -70 dB FS to the track – which is 60 dB less than the original 50-, 1,000- and 5,000-hertz signals.

Audio Distortion
A gross simplification of the harmonic distortion added by a typical consumer-grade source unit.

Now we can see how there is some low-level content added at three times each of the fundamental frequencies. Remember, in real music, we aren’t dealing with pure tones but with bands of audio information. So, everywhere there is audio information, the product adds harmonics to the output.

Signal Processing

The next step in the audio food chain is to pass the signal through a processor. Once again, our goal is to explain the concept here, so we will keep things unrealistically simple and ignore any equalization or filtering. We’ll consider the harmonics added by a typical good-quality processor. Since this system isn’t using top-of-the-line gear, we’ll use an affordable six-input, six-output processor as the model. I’ve tested several of these, and they add about 0.05% THD to the signal. That value equates to another round of harmonics added to the output at a level of -80 dB.

Audio Distortion
The 1 kHz distortion characteristics of a consumer-grade six-input, six-output digital signal processor.

Since the processor doesn’t know the difference between the original audio source and the information that includes harmonic distortion, it adds harmonics to the harmonics. Think of this like compound interest on a car loan or mortgage. In this case, those harmonics are below the background noise level in the audio track, so they are invisible.

Audio Distortion
The level of our third-order harmonics is now louder as the DSP has more distortion.

The third-order harmonics have now increased to an absolute level of -67 dB FS from their -70, thanks to our digital signal processor’s third-order distortion characteristics.

System Amplification

Here’s where we need to make some assumptions about how the system is being used. Amplifiers don’t have linear distortion characteristics. They add more harmonics at low levels and less when being pushed hard. For this example, we will go right up the middle and assume we are listening to the system at a moderately loud playback level. Given the typical speakers in a vehicle and their reference efficiency, let’s say we’re enjoying an average playback level of around 90 dB SPL. Believe it or not, your amplifier is likely only producing 1 or 2 watts of power, assuming you haven’t cranked up the bass control on the radio. Most consumers and audio enthusiasts underestimate the importance of clean audio amplification and low output levels. This is why BestCarAudio.com measures amplifier THD+N and S/N ratio at 2 volts, as this equates to 1 watt of power into a 4-ohm speaker.

Audio Distortion
How a consumer-grade, Class-D car audio amplifier behaves in terms of harmonic distortion with a 1 kHz signal at an output level of 2 volts.

A modern, affordable Class-D amplifier adds about 0.01% THD, but it’s often reasonably equal between first and second harmonics. We don’t want to overload the concept, so we’ll add -83 dB FS frequency content at first- and second-order spacing to our audio signal. Please don’t fret; this will make sense when you see it.

Audio Distortion
The spectral content of our three-tone test signal after adding harmonic distortion from the source unit, a digital signal processor and an amplifier.

The third-order tones are now above -70 dB FS, making them only 60 dB SPL quieter than our original signal. This isn’t loud but represents a total harmonic distortion level of 0.1%. Imagine if any component in the chain were of poor quality. We’ve measured ultra-compact amplifiers that are much worse than our example. Stacking another 10 dB of harmonic distortion on top of the existing audio content is almost easy.

Speaker Distortion

Sadly, we’ve reached the weakest link in the audio system in terms of adding distortion to our original signal. We’ve just started characterizing speakers’ harmonic distortion characteristics, so officially, we don’t have a massive database of information to pull from. For this example, let’s say that the vehicle has a set of upgraded speakers in the front and back – something like a 6.5-inch coaxial in both locations. We know that every speaker increases the amount of distortion it adds as cone excursion increases. Since reproducing bass frequencies requires that we move a lot of air, that’s where we’ll run into the most significant distortion issues.

Audio Distortion
Frequency and harmonic distortion of a typical OEM 6.5-inch car speaker. Red, output; gray, second-order distortion; green, third-order distortion.

We’ve already decided we’re at a playback level of around 90 dB SPL. Based on our testing and some educated forecasting, let’s add 1% even- and odd-order harmonic distortion at the bass frequencies. We’ll add 0.3% at the midrange and 0.1% at high frequencies. These equate to -50 dB FS tones at 100 and 150 hertz, -60.45 dB FS tones at 2 kHz and 3 kHz and -70 dB FS tones at 10 kHz and 15 kHz. Let’s see what that looks like.

Audio Distortion
What’s happened to our three-tone audio signal after passing through a set of consumer-grade audio components.

Distortion Adds Something from Nothing

Let’s analyze this final signal. We have 100- and 150-hertz harmonics in the bass region at levels of -50 and -49 dB FS relative to our -10 dB FS source. That’s about -36.5 dB of distortion or 1.5%. For the -10 dB FS midrange tone, we have harmonics at -60 dB and -67 dB, which work out to a total harmonic distortion level of -45.47 dB or 0.423%. Finally, for our high-frequency information, the harmonics are at -58.5 and -52.3 relative to the original signal, for a total distortion of -51.4 dB or 0.27%.

What Are Our Takeaways?

We first need to realize that distortion is added at all volume levels, not just when a component is pushed beyond its linear operating range. Second, speakers are notorious for adding large amounts of distortion. Buying speakers with distortion-reducing technologies like shorting rings and copper or aluminum T-yoke caps can make a massive difference to your audio system. Lastly, this is a very simplified example of how distortion works. We ignored the first- and third-order distortion from the head unit and processor, along with the intermodulation distortion created between these fundamentals and harmonics. More importantly, we ignored that music is full of frequency content and not just three bands. Imagine these exact multiples of every frequency between 50 and 5 kHz.

Higher-quality audio components and speakers can quickly improve distortion performance by an order of magnitude or two, dropping it by 10 or 20 dB overall. Designing an audio system with a subwoofer will alleviate the need for a small speaker to try to reproduce bass frequencies for another significant reduction in unwanted harmonic information.

We also didn’t talk about background noise at all. A source unit like this might have a signal-to-noise ratio of 73 dB. The DSP has an S/N ratio of 78 dB, and the amp is likely in the 88 dB range. All this noise adds up and can become audible between tracks or during quiet passages in your music.

When it’s time to upgrade your vehicle’s audio system, drop by a local specialty mobile enhancement retailer and audition some options that will work with your application. The time you invest in choosing the best-performing solutions for the money will reward you with hours of great listening.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Why Do All Car Audio Speakers Need To Be Auditioned Before Buying?

Audition Speakers

Picking new speakers for your home, a new set of headphones or upgrades for your car audio system should all involve the same auditioning process. Take two or three of your favorite songs on a memory stick to a local mobile enhancement retailer and audition the speakers under controlled conditions. We can’t count the number of times people have purchased speakers based on a brand’s perception of quality only to hear others that sound significantly better for equal or sometimes dramatically less money.

We’ve covered the process of auditioning speakers in the past. In this article, we’ll look at what makes speakers that look somewhat similar sound so different.

For this discussion, let’s look at the differences between 6.5-inch woofers that you’d find in a component set. The same design differences apply to many coaxial speakers and even to subwoofers.

Speaker Sizes

You’d think that within a specific speaker size class, the effective cone area of a driver would be pretty consistent. The specification that describes the effective cone area is called Sd and is typically specified in square centimeters, though the official standard is square meters. Many entry-level or high-excursion 6.5-inch drivers have an effective area specification of around 120 square centimeters. Those designs that have been optimized to maximize surface area might be above 140 square centimeters. That’s 17% more cone area that fits in the same application.

In terms of efficiency and low-frequency output, more area is better. The drawback of a larger cone is that it becomes directional at a lower frequency and necessitates a tweeter that can play loudly at frequencies below 2 kilohertz without producing a lot of distortion. Purely from an effective cone area standpoint, you can imagine that different driver designs sound unique, and more so when listened to off-axis.

Audition Speakers
Rockford Fosgate’s Vertical Attach Surround Technology (VAST), as used on the T3652-S set, increases effective cone area for more efficiency and output.

Cone Excursion Capability and Power Handling

If you want to listen to your music at high volume levels, you need a driver that’s designed to be reliable and can move a lot of air. Without getting overly complicated, the length of the voice coil in relation to the height of the motor structure’s top plate determines how far the cone can move forward or rearward linearly. This specification is known as Xmax. It’s calculated by subtracting the top plate’s height from the voice coil’s height, then dividing by two. The suspension design also plays into how linearly the driver operates, but we’ll skip that for the moment. A basic OE replacement speaker might move forward and rearward 2 or 3 millimeters in each direction. A mid-level driver that can play much louder might reach up to 5 millimeters in each direction. The most premium designs offer more than 8 millimeters of excursion (in each direction) and often outperform larger drivers with lesser designs.

Of course, to make a speaker cone move greater distances, an amplifier needs to feed it significant amounts of power. As speakers are notoriously inefficient, much of the energy they receive is converted to heat in the voice coil winding. To increase power handling, larger voice coil formers are necessary. A typical replacement or basic upgrade speaker might have a voice coil with a diameter of 25 centimeters or about an inch. These drivers can often handle up to 75 or 80 watts of power if the winding is relatively long. If it’s short, power handling is usually down around 50 watts.

Better drivers will use larger voice coils in the 38-mm or 1.4-inch range. Power handling on these drivers jumps to around 100 to 125 watts, depending on the rating and testing method. Finally, the most custom designs might use a 51-millimeter former for the most durability at extreme operating levels. Oddly, the companies using these designs seem conservative, with their power ratings at about 100 to 150 watts continuous.

Audition Speakers
The Audison Thesis TH 6.5 II Sax woofer features a 50-mm voice coil to provide a 150-watt continuous power handling rating.

Cone Materials

If ever there was a topic that confused consumers, it would be the benefits and drawbacks of different woofer cone materials. Paper, plastic, carbon fiber, aluminum, layered composites, woven composites and all manner of in-between designs are prevalent in the top brands. Is one better than another? Some might excel in some frequency ranges while performing poorly in others.

The goal of the woofer cone is to move forward and rearward linearly without resonating. Rigid cones that aren’t well-damped tend to get very excited at higher frequencies and can cause harshness in the upper midrange. They are all reasonably similar at lower frequencies, except for how their mass works with the suspension and motor design to affect bass reproduction. If you see or hear claims of “tighter bass” based on a suggestion of improved cone material, someone doesn’t understand speaker design.

We should talk about dust caps and surrounds as an extension of cone materials. These components exhibit the same distortion-causing resonance issues as a poorly designed cone. These parts aren’t afterthoughts, and their design and selection are paramount to the proper operation of a speaker.

Audition Speakers
Sony’s Mobile ES Lightweight Rigid Cellular Diaphragm woofer cones control high-frequency resonances to deliver precise audio reproduction.

Motor and Suspension Design

Perhaps the most significant factor of loudspeaker sound quality is the motor’s design and the selection of suspension components. As an extension of our discussion of voice coil geometry and excursion limits, how the suspension behaves at extreme drive levels can effectively determine the sound quality of a speaker. Cupped spiders or those with linear compliance curves can result in significant distortion at lower frequencies and high excursion levels. Distortion will occur if more electrical input doesn’t equate to perfectly symmetrical or a proportional increase in cone travel. I’ve measured high-efficiency drivers that produced more output at 160 Hz than 80 Hz when driven with an 80-hertz sine wave. That’s right; the source information didn’t contain any audio at 160 hertz.

Consistent voice coil inductance based on cone position is also an important issue. When the voice coil moves forward, the T-yoke occupies less of it. When it moves rearward, more of the coil surrounds the T-yoke. This not only changes the inductance of the driver but its perceived frequency response.

The result, in extreme cases, is akin to listening to your voice when speaking through the blades of a moving fan. More high-frequency information is produced when bass information moves the cone outward and less when the cone moves inward. Features like aluminum and copper shorting rings in the motor and copper caps or shields on the T-yoke can help reduce this phenomenon.

Audition Speakers
The Hertz ML 1650.3 Legend includes an aluminum-covered pole and a shorting ring to reduce variance in inductance to yield better sound quality.

Another factor that plays a huge role in the understanding of speaker quality is the stiffness of the suspension. A “tight” or inflexible driver typically has a higher Qms (mechanical Q) compared to a very soft one. This results in the driver being overdamped, which causes it to ring and resonate after the signal has stopped. It’s like flicking one of those spring door stops you’d find on the baseboard at home. Mathematically, perfect damping occurs when a driver in its enclosure has a Qtc (total system Q) of 0.5. At this value, the transient response is considered perfect. This comes at the expense of some output in the midbass region. A total system Q of 0.707 is called a Butterworth response, and it exhibits flat frequency response above the resonant frequency with acceptable time-based performance.

Systems with Qtc values around 1.0 are often described as warm as more upper bass information is produced. However, this comes with a significant increase in system distortion and a lack of what is described as “cone control.” It might be fun, but it’s not technically accurate.

Audition Speakers
The ARC Audio RS 6.0 is a low-Q driver that combines premium cone and dust cap design with an impressively linear motor assembly to deliver clean performance.

Why You Need to Audition Car Audio Speakers

No two speaker designs are going to sound the same. Some drivers are optimized for efficiency to serve as original-equipment replacement speakers that will work well with a factory-installed or low-power radio. Other drivers are designed to handle significant amounts of power and produce a generous helping of bass at the expense of upper-frequency output.

Efficiency, frequency response, distortion characteristics, directivity, Q-factor and much more change how a speaker sounds. To choose an upgrade that will work well in your audio system, audition the drivers you have in mind under conditions that are as controlled as possible. Looking at graphs and specifications can, if you have years of experience understanding how the information affects performance, tell you something about the driver.

Still, none of that characterizes non-linearities that cause distortion. No car audio companies share that information publicly. As such, you must train your ears to pick up issues affecting performance. Take your favorite music to a local specialty mobile enhancement retailer and start listening. Give the volume on the source unit a good crank and get the speakers working so you’ll know what to expect.

Once you’ve established a baseline for quality, listen to even more speakers. When you can pick out the differences, choose the driver that’s the most accurate in all regards for your vehicle – you’ll be happy you did.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Understanding Speaker Quality: OEM Speakers

OEM Speaker Quality

Up to this point, we’ve explained the difference in performance between entry level, poorly designed and premium car audio amplifiers. We hope you’ve found this informative, and now it’s time we took a close look at car audio speakers. No car audio component is more crucial than speakers for reproducing music with accuracy and clarity.

This series of articles will analyze the impedance, frequency response, output capability and distortion characteristics of different car audio speakers. The goal is to give those of you who want to upgrade the clarity and performance of your audio system a clear correlation between design features, specifications and, ultimately, performance.

OEM Speaker Quality
The woven fiber cone and rubber surround of this OEM Honda Civic speaker.

Factory-Installed Honda Civic Speaker

I have a set of door speakers from a Honda Civic for our first subject. This is a woofer (no tweeter) with an effective cone diameter of 125.5 millimeters measured from the middle of the surround on one side of the driver to the center on the other side. The cone is made from a woven yellow fiber which could be of glass or aramid composition. The dust cap is formed from soft textile but is much less rigid. The speaker has a rubber surround, which lasts longer than foam.

Mechanically, the speaker has a relatively small-diameter flat linear spider bonded to a 1-inch voice coil former. There’s no cooling vent on the rear of the magnet or venting under the spider mounting ledge. The basket is formed from injection-molded, glass fiber-reinforced polycarbonate and has six deeply reinforced spokes. As is typical for an OEM speaker, the mounting flange includes a built-in spacer with an integrated gasket that will bring the speaker out near the grille in the interior door trim panel. Overall, aside from a small voice coil and lack of cooling technologies, the design offers nothing of significance to complain about.

OEM Speaker Quality
Many OEM speakers include mounting provisions that place the cone close to the interior trim panel’s grille.

Measuring Thiele/Small Parameters

Every speaker of every size can have its low-frequency characteristics modeled by a set of measurements and values summarized as Thiele/Small parameters. These measurements can be used with enclosure simulation software to predict how the driver will behave in an enclosure.

The Thiele/Small parameters quantify the driver’s suspension compliance, resonant frequency, mechanical Q, electrical Q and motor force. The information does not describe any nonlinearities in the suspension or magnetic fields or the excursion limits of the design. Far too many amateur audio enthusiasts think you can quantify the low-frequency sound quality of a speaker using enclosure simulation with Thiele/Small parameters. You can’t.

I’ll use my Clio Pocket with the added mass process to measure this information for the Honda speaker.

OEM Speaker Quality

Is there anything we can discern in terms of performance from the measured Thiele/Small parameters? The first thing we see is that the driver has a relatively high total Q (Qts) of 0.69. This will add a little resonant bump in output in the lower midbass region. It’s likely a good design trade-off for a speaker designed to be used without a subwoofer, as it will add a touch of warmth to the sound. However, in absolute terms, this will be a bit of unwanted distortion. Lastly, the predicted efficiency is relatively high at 89.04 dB SPL when driven with 1 watt of power and measured at 1 meter. This is also normal for an OEM speaker as they trade low-frequency output for increased output at higher frequencies. The ~10-gram moving mass supports this theory.

Let’s look at what the BassBox Pro enclosure simulation software predicts this driver will do in our 3-cubic-foot test enclosures. I chose this volume as it’s typically large enough to have minimal effect on the driver’s performance and should simulate how the speaker will behave in a door or rear parcel shelf.

OEM Speaker Quality
The low-frequency response of our Honda door speaker in an infinite baffle application.

As you can see from the graph above, this is more of a midrange driver than a woofer. I guessed at the 30-watt power handling based on the diminutive size of the voice coil and lack of cooling features. In terms of predictions, the driver has a -3 dB frequency of 98 hertz and would greatly benefit from being used with a subwoofer.

Measuring Driver Impedance

Part of measuring Thiele/Small parameters is to make a series of impedance sweeps. Impedance is the opposition to the flow of alternating current (AC) signals. As you can see from the graph below, the driver has a fairly tall, narrow peak around its resonant frequency of 74.7 hertz. You can also see the increase in inductance at higher frequencies as the upward trend to the right.

OEM Speaker Quality
Impedance sweep of the Honda Civic’s 6.5-inch door speaker.

We can see something else in this graph. Something has caused a noticeable resonant peak at about 700 to 800 Hz, and there are additional wiggles in the response at 2.4, 3.7 and 5.2 kHz. These are likely caused by the cone, dust cap or surround resonating. We’ll see if any of these translate into quantifiable distortion in the acoustic measurements.

Speaker Acoustic Measurements

With the driver loaded into my 3-cubic-foot test enclosure, I placed it on the floor of my lab. The microphone from the Clio Pocket is 1 yard above the top edge of the cone, where it meets the surround. We’ll use this position for all speakers going forward. We’ll begin the testing by taking frequency response measurements at increasing drive levels. While there is no specific standard, we’ll clone what Vance Dickason uses in his transducer tests in Voice Coil magazine with 0.3, 1, 3, 6, 10 and 15 volts. It’s doubtful that the driver will remain linear in output at the 10- and 15-volt levels as those values equate to 25 and 56 watts of power into a 4-ohm load. I will add a 2-volt measurement that equates to 1 watt into a 4-ohm load.

Before we get into the analysis of the speaker, we need to understand a few things about the measurements. First, the information below 30 Hz can be ignored. There is no output of 100 dB SPL at 10 Hz. Second, the dip at 130 Hz is a reflection in the room. It can be ignored as well. We know this is an acoustic cancellation because there is no dip or peak in the impedance or distortion curves. Sorry, I don’t happen to have an anechoic chamber at my disposal. In the meantime, I’ll continue to purchase lottery tickets!

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 0.3-volt RMS sweep.

Well, here’s our first look at the Honda speaker. From 160 Hz through to 1.5 kHz, the response is adequately flat given the non-anechoic characteristics of my lab. From 1.5 through to 5.5 kHz, there is a bump in the output of about 6 dB.

The black trace lower in the graph is the total harmonic distortion (THD) measured by the Clio. Let’s look at a few frequencies and make some percentage distortion calculations. From 200 through to 400 Hz, the harmonic distortion is -49 dB, equating to 0.35% THD. At 80 Hz, distortion is at 1.5%, and the significant bump in distortion around 1.3 kHz represents approximately 0.89% distortion.

Let’s sweep it again with a little more voltage – this time, the signal generator is set to 1 volt RMS.

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 1-volt RMS sweep.

The first thing to observe at this higher drive level is that the output increases linearly. All frequencies are roughly 10 dB louder. This is good because neither the suspension compliance nor the motor force has become a limiting factor. Something is happening up at 4.5 kHz that’s caused a bump in the distortion curve. Overall, though, it’s not too bad for this roughly 0.25-watt playback level.

Let’s bump things up to 3 volts.

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 3-volt RMS sweep.

In terms of frequency response, things remain nice and linear. All frequencies are once again about 10 dB louder. What isn’t so good is the harmonic distortion characteristics. A bump appears between 700 and 900 Hz at almost 2% distortion. This would be audible if not buried with other audio information. Distortion in the bass frequencies, 70 Hz, is over 3%. This 3-volt drive level equates to roughly 2.25 watts of power for a nominal 4-ohm speaker.

OK, how about 6 volts from the function generator for the next sweep?

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 6-volt RMS sweep.

A drive level of 6 volts is roughly 9 watts of power into a 4-ohm load. The graph above shows that distortion at all frequencies has increased by more than the increase in fundamental output. For example, when driven with 3 volts at 900 Hz, the THD was around 2%. Now, with 6 volts, the distortion has increased to 3%. Remember that bump we saw in the impedance graph around 800 Hz? Well, now it’s back as a peak in the distortion graph. You’d be surprised what you can learn from impedance graphs.

Last but not least, let’s feed this driver with a 10-volt sweep that equates to about 25 watts of power.

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 10-volt RMS sweep.

Though we only picked up about 3 dB more output, the distortion has increased significantly. We have 7% distortion at 800 Hz and over 3.5% at 200 Hz. If we look down in the bass region, 80 Hz is at about 10% total harmonic distortion. In short, this speaker would sound pretty bad when driven with much more than 10 to 15 watts of power and would be screaming at 25 watts.

Better Speakers Offer Better Performance

In terms of establishing a foundation for our measurements and speaker comparisons, we’ll stop here. This article will serve as a benchmark for what looked like a reasonable quality OEM speaker. We’ll test some speakers that might be better and some that might be worse over the next few months. This information should allow us to develop a correlation between design features and performance. In the meantime, if you’re shopping for new car audio speakers, drop by your local specialty mobile enhancement retailer to audition some options for your vehicle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

  • « Previous Page
  • 1
  • …
  • 10
  • 11
  • 12
  • 13
  • 14
  • …
  • 79
  • Next Page »

Recent Articles

A confused looking man with his arms crossed, pointing at a speaker on either side of him.

Speaker Sensitivity – Specifications and Explanation

August 24, 2025 

Every speaker, be it a tweeter, midrange driver, woofer or subwoofer, will have a sensitivity rating. Sensitivity ratings attempt to describe how much sound a speaker will produce … [Read More...]

Two wires on one side, with one large wire on the other side with an equal sign between them

Wire Equivalency Using the AWG Standard: 16+16 Isn’t 8

August 17, 2025 

We recently witnessed a discussion on social media in which someone said that two 16 AWG wires could do the same work as a single 8 AWG wire. Unfortunately, the American Wire Gauge … [Read More...]

The inside of a car with a band playing on a stage through the front window

The Four Stages of High-End Car Audio – Part 2: The Soundstage

August 10, 2025 

We’re back with the second of four articles discussing the listening experience of truly high-end car audio systems. In our first article, we discussed the importance of accurate … [Read More...]

A cartoon car with rings around it, signifying the ADAS systems detecting the surroundings

A Look at Modern ADAS Technology and Terminology

August 3, 2025 

Shopping for a new car, pickup truck or SUV is impossible without being bombarded with information about ADAS technology. Advanced driver assistance systems are designed to help … [Read More...]

Car trunk open with many red wires pouring out of it

Deep Thoughts on Car Audio Power Wire Sizing

July 27, 2025 

In the 1980s, most car stereo shops had charts in the install bays that showed what size power wire should be used with different amplifiers. Some charts were based on current and … [Read More...]

Customer Reviews

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Quakertown Showroom and Installation Facility


Get Directions to Clear Vibrations

Hours

Monday, Tuesday, Wednesday, Thursday, Friday9:00 am – 5:00 pm

Services

  • Car Audio
  • Custom Installation
  • Fleet Services
  • Driver Safety
  • Remote Car Starters

Connect With Us

  • Facebook
  • Instagram
  • Twitter
  • YouTube

Copyright © 2025 Clear Vibrations · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...