Clear Vibrations

Quakertown, PA's Mobile Enhancement Headquarters

550 California Road Suite 7
Quakertown, PA 18951
267-227-3875
  • Home
  • Services
    • Car Audio
    • Custom Installation
    • Driver Safety
    • Fleet Services
    • Remote Car Starters
  • About Us
    • Work for Clear Vibrations
  • Reviews
  • Location
  • Contact Us
  • Facebook
  • Instagram
  • Twitter
  • YouTube

Product Spotlight: Sony XS-W124GS and XS-W104GS Car Audio Subwoofers

Sony XS-W124GS

Although talking about a trunk full of high-performance subwoofers powered by big amplifiers is fun, Sony knows that many people want a more cost-effective bass upgrade for their cars and trucks. On the heels of their entirely new Mobile ES amplifiers, source units, speakers and subwoofers, Sony has launched the latest iteration of the GS series speakers and subwoofers. This Product Spotlight will look at the 12-inch XS-W124GS and 10-inch XS-W104GS car audio subwoofers.

Features of the Sony XS-W124GS Subwoofer

The 12-inch (30-cm) XS-W124GS and 10-inch (25-cm) XS-W104GS subwoofers feature five-spoke, heavy-gauge stamped steel frames. Each spoke has an embossed element to add stiffness and rigidity. The frames also feature integrated vents below the spider mounting ledge. These vents allow heat to escape from the voice coil and motor assembly and prevent pressure from building up in the spider at high excursion levels. This design feature offers direct benefits regarding increased power handling, reduced power compression and improved linearity.

The motor assembly at the base of the chassis features a pair of ferrite magnets for good efficiency. The T-yoke has a cooling vent in the center, serving the same purposes as the vents in the frame. Heat can escape from the motor, and pressure won’t build up under the dust cap. The result is an additional reduction in thermal compression and reduced distortion at high volume levels.

Sony XS-W124GS
A five-spoke, reinforced steel chassis is a rigid platform for the Sony XS-W124GS 12-inch and XS-W105GS 10-inch subwoofers.

Each subwoofer features a pair of progressive-rate spiders attached to the cone assembly to the basket. These spiders are a feature that Sony has brought from the Mobile ES drivers. The spiders provide the necessary cone control and compliance while keeping everything centered. Sony chose moderately stiff spiders to give the drivers a higher Qts value, which translates to improved output efficiency. Tinsel leads are sewn to the spider so they won’t hit the cone and cause unwanted noises at high output levels.

Sony XS-W124GS
The new GS-Series subwoofers feature technologies previously developed for the premium Mobile ES drivers that improve performance and reliability.

Sony GS Series Subwoofer Moving Components

Both GS series subwoofers feature a rigid paper cone bonded to the voice coil former. You can see in the cutaway image that the upper spider has a reinforcing collar at the base of the cone that strengthens the joint to the voice coil former and spider to improve reliability. A full-size parabolic dust cap made from injection-molded polypropylene attaches to the surround to form the cone assembly’s face. A rubber surround serves as the upper compliance for the woofer cone. Rubber lasts much longer than foam so these woofers will sound great in your car or truck for many years. A custom-tooled trim ring adorns the outer edge of the subwoofer to give it a tidy appearance.

Sony XS-W124GS
The polypropylene dust cap and custom trim ring give the XS-W124GS a classy, clean appearance.

XS-W124GS Physical Dimensions and Driver Specifications

The XS-W124GS subwoofer has an outside diameter of 13 1/8” (332 cm) and requires a mounting hole with a diameter of 11 1/8” (280 cm). The mounting depth is 5 3/4” (143.4 cm), but your installer will want to leave some room for the vent in the T-yoke. Sony rates the XS-W124GS as capable of handling 300 watts of power using the IEC 60286-5 standard and 420 watts using the ANSI/CTA-2031 standard. Peak power handling is 1,800 watts.

Regarding Thiele/Small parameters, the driver has a resonant frequency of 31.9 ohms, an equivalent compliance value (Vas) of 49.194 liters and a Total Q (Qts) of 0.724. As mentioned, the moderately high Q-value will help increase efficiency and output. Suggested enclosures are 0.91 cubic foot for a sealed design and 1.16 cubic feet tuned to 37 hertz for bass reflex applications. The graph below shows the predicted free-field response of the two enclosures, with the driver receiving 420 watts of power.

Sony XS-W124GS
Predicted free-field output at 420 watts: yellow, 0.91 ft3 sealed; red, 1.16 ft3 @ 37 hertz.

XS-W104GS Physical Dimensions and Driver Specifications

The 10-inch XS-W104GS has an outer diameter of 11 inches (279 mm), requires a mounting hole with a diameter of 9 1/4 inches (234 mm) and requires 5 1/8 inches (129.8 mm) of depth. Rated power handling is 300 watts continuous and 350 watts using the ANSI/CTA-2031 standard. Peak power handling is 1,500 watts.

The 10-inch subwoofer has an Fs of 30.9 hertz, an equivalence compliance of 36.47 liters and a Total Q of 0.505. By way of enclosures, Sony suggests an acoustic suspension design with a volume of 0.88 cubic foot or a bass reflex enclosure with a volume of 0.91 cubic foot tuned to 38 hertz. Given the similarity in suggested enclosure volumes, we’d go with the bass reflex design and enjoy the increased efficiency.

Sony XS-W124GS

Sony backs the new 10- and 12-inch GS series subwoofers with a three-year warranty against manufacturing defects and workmanship issues. This generous warranty doesn’t mean you can hook one to a 1,000-watt amp or clip the daylights out of a 400-watt amp and melt the voice coil, then expect to get a new subwoofer.

Upgrade Your Car Audio System with Sony GS series Subwoofers

If you’re looking for an affordable, high-quality subwoofer from a company that stands behind its products, drop into a local authorized Sony car audio retailer today. Ask about the new GS series subwoofers like the XS-W124GS we looked at here. They can match the driver to an enclosure and suggest an amplifier that will perform great. Adding bass to your car stereo is one of the best upgrades you can make. With the Sony GS subwoofers, great sound doesn’t have to cost a small fortune. You can find an authorized Sony Car Audio retailer near you using their dealer locator tool. Also, follow Sony on Facebook to stay up-to-date with their latest product releases.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, PRODUCTS Tagged With: Sony

Why Do All Car Audio Speakers Need To Be Auditioned Before Buying?

Audition Speakers

Picking new speakers for your home, a new set of headphones or upgrades for your car audio system should all involve the same auditioning process. Take two or three of your favorite songs on a memory stick to a local mobile enhancement retailer and audition the speakers under controlled conditions. We can’t count the number of times people have purchased speakers based on a brand’s perception of quality only to hear others that sound significantly better for equal or sometimes dramatically less money.

We’ve covered the process of auditioning speakers in the past. In this article, we’ll look at what makes speakers that look somewhat similar sound so different.

For this discussion, let’s look at the differences between 6.5-inch woofers that you’d find in a component set. The same design differences apply to many coaxial speakers and even to subwoofers.

Speaker Sizes

You’d think that within a specific speaker size class, the effective cone area of a driver would be pretty consistent. The specification that describes the effective cone area is called Sd and is typically specified in square centimeters, though the official standard is square meters. Many entry-level or high-excursion 6.5-inch drivers have an effective area specification of around 120 square centimeters. Those designs that have been optimized to maximize surface area might be above 140 square centimeters. That’s 17% more cone area that fits in the same application.

In terms of efficiency and low-frequency output, more area is better. The drawback of a larger cone is that it becomes directional at a lower frequency and necessitates a tweeter that can play loudly at frequencies below 2 kilohertz without producing a lot of distortion. Purely from an effective cone area standpoint, you can imagine that different driver designs sound unique, and more so when listened to off-axis.

Audition Speakers
Rockford Fosgate’s Vertical Attach Surround Technology (VAST), as used on the T3652-S set, increases effective cone area for more efficiency and output.

Cone Excursion Capability and Power Handling

If you want to listen to your music at high volume levels, you need a driver that’s designed to be reliable and can move a lot of air. Without getting overly complicated, the length of the voice coil in relation to the height of the motor structure’s top plate determines how far the cone can move forward or rearward linearly. This specification is known as Xmax. It’s calculated by subtracting the top plate’s height from the voice coil’s height, then dividing by two. The suspension design also plays into how linearly the driver operates, but we’ll skip that for the moment. A basic OE replacement speaker might move forward and rearward 2 or 3 millimeters in each direction. A mid-level driver that can play much louder might reach up to 5 millimeters in each direction. The most premium designs offer more than 8 millimeters of excursion (in each direction) and often outperform larger drivers with lesser designs.

Of course, to make a speaker cone move greater distances, an amplifier needs to feed it significant amounts of power. As speakers are notoriously inefficient, much of the energy they receive is converted to heat in the voice coil winding. To increase power handling, larger voice coil formers are necessary. A typical replacement or basic upgrade speaker might have a voice coil with a diameter of 25 centimeters or about an inch. These drivers can often handle up to 75 or 80 watts of power if the winding is relatively long. If it’s short, power handling is usually down around 50 watts.

Better drivers will use larger voice coils in the 38-mm or 1.4-inch range. Power handling on these drivers jumps to around 100 to 125 watts, depending on the rating and testing method. Finally, the most custom designs might use a 51-millimeter former for the most durability at extreme operating levels. Oddly, the companies using these designs seem conservative, with their power ratings at about 100 to 150 watts continuous.

Audition Speakers
The Audison Thesis TH 6.5 II Sax woofer features a 50-mm voice coil to provide a 150-watt continuous power handling rating.

Cone Materials

If ever there was a topic that confused consumers, it would be the benefits and drawbacks of different woofer cone materials. Paper, plastic, carbon fiber, aluminum, layered composites, woven composites and all manner of in-between designs are prevalent in the top brands. Is one better than another? Some might excel in some frequency ranges while performing poorly in others.

The goal of the woofer cone is to move forward and rearward linearly without resonating. Rigid cones that aren’t well-damped tend to get very excited at higher frequencies and can cause harshness in the upper midrange. They are all reasonably similar at lower frequencies, except for how their mass works with the suspension and motor design to affect bass reproduction. If you see or hear claims of “tighter bass” based on a suggestion of improved cone material, someone doesn’t understand speaker design.

We should talk about dust caps and surrounds as an extension of cone materials. These components exhibit the same distortion-causing resonance issues as a poorly designed cone. These parts aren’t afterthoughts, and their design and selection are paramount to the proper operation of a speaker.

Audition Speakers
Sony’s Mobile ES Lightweight Rigid Cellular Diaphragm woofer cones control high-frequency resonances to deliver precise audio reproduction.

Motor and Suspension Design

Perhaps the most significant factor of loudspeaker sound quality is the motor’s design and the selection of suspension components. As an extension of our discussion of voice coil geometry and excursion limits, how the suspension behaves at extreme drive levels can effectively determine the sound quality of a speaker. Cupped spiders or those with linear compliance curves can result in significant distortion at lower frequencies and high excursion levels. Distortion will occur if more electrical input doesn’t equate to perfectly symmetrical or a proportional increase in cone travel. I’ve measured high-efficiency drivers that produced more output at 160 Hz than 80 Hz when driven with an 80-hertz sine wave. That’s right; the source information didn’t contain any audio at 160 hertz.

Consistent voice coil inductance based on cone position is also an important issue. When the voice coil moves forward, the T-yoke occupies less of it. When it moves rearward, more of the coil surrounds the T-yoke. This not only changes the inductance of the driver but its perceived frequency response.

The result, in extreme cases, is akin to listening to your voice when speaking through the blades of a moving fan. More high-frequency information is produced when bass information moves the cone outward and less when the cone moves inward. Features like aluminum and copper shorting rings in the motor and copper caps or shields on the T-yoke can help reduce this phenomenon.

Audition Speakers
The Hertz ML 1650.3 Legend includes an aluminum-covered pole and a shorting ring to reduce variance in inductance to yield better sound quality.

Another factor that plays a huge role in the understanding of speaker quality is the stiffness of the suspension. A “tight” or inflexible driver typically has a higher Qms (mechanical Q) compared to a very soft one. This results in the driver being overdamped, which causes it to ring and resonate after the signal has stopped. It’s like flicking one of those spring door stops you’d find on the baseboard at home. Mathematically, perfect damping occurs when a driver in its enclosure has a Qtc (total system Q) of 0.5. At this value, the transient response is considered perfect. This comes at the expense of some output in the midbass region. A total system Q of 0.707 is called a Butterworth response, and it exhibits flat frequency response above the resonant frequency with acceptable time-based performance.

Systems with Qtc values around 1.0 are often described as warm as more upper bass information is produced. However, this comes with a significant increase in system distortion and a lack of what is described as “cone control.” It might be fun, but it’s not technically accurate.

Audition Speakers
The ARC Audio RS 6.0 is a low-Q driver that combines premium cone and dust cap design with an impressively linear motor assembly to deliver clean performance.

Why You Need to Audition Car Audio Speakers

No two speaker designs are going to sound the same. Some drivers are optimized for efficiency to serve as original-equipment replacement speakers that will work well with a factory-installed or low-power radio. Other drivers are designed to handle significant amounts of power and produce a generous helping of bass at the expense of upper-frequency output.

Efficiency, frequency response, distortion characteristics, directivity, Q-factor and much more change how a speaker sounds. To choose an upgrade that will work well in your audio system, audition the drivers you have in mind under conditions that are as controlled as possible. Looking at graphs and specifications can, if you have years of experience understanding how the information affects performance, tell you something about the driver.

Still, none of that characterizes non-linearities that cause distortion. No car audio companies share that information publicly. As such, you must train your ears to pick up issues affecting performance. Take your favorite music to a local specialty mobile enhancement retailer and start listening. Give the volume on the source unit a good crank and get the speakers working so you’ll know what to expect.

Once you’ve established a baseline for quality, listen to even more speakers. When you can pick out the differences, choose the driver that’s the most accurate in all regards for your vehicle – you’ll be happy you did.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Product Spotlight: Rockford Fosgate Can-Am Defender Audio System

Defender Audio

The Can-Am Defender is a work-focused side-by-side, but that doesn’t mean you can’t have fun while getting things done. Rockford Fosgate, the undisputed leader in powersports audio upgrades, proudly announces their Stage 1 roof audio upgrade for select 2017 and newer Can-Am Defenders. Let’s check it out!

What Is the Rockford Fosgate DEFEND17-STG1?

Can-Am seems to have decided that very few Defenders come with an audio system. Rockford Fosgate comes to the rescue with their DEFEND18-STG1. This compact audio system mounts to the roof right by the front windshield and includes a PMX-1 media receiver and a pair of 5.25-inch TMS5 Element Ready speakers in custom enclosures.

Defender Audio
The DEFEND17-STG1 is the perfect all-in-one audio system upgrade for select 2017 and newer Can-Am Defender side-by-sides.

PMX-1 Source Unit Features

The heart of the DEFEND18-STG1 Defender audio system is the PMX-1 media receiver. This compact source unit features a 2.3-inch dot-matrix display protected by a tempered glass screen. Unlike similar units with plastic front panels, you don’t have to worry about scratches, fading or yellowing with the PMX-1. A large rotary volume control is in the center, and easily accessed buttons on either side make using the radio while wearing work gloves a non-issue.

The PMX-1 is most commonly connected to a smartphone via Bluetooth. You can stream music stored on your phone or from an online service like Pandora, iHeartRadio or Spotify. The Bluetooth connection supports the AVRCP protocol, so you can change tracks from the radio. The PMX-1 includes an AM/FM tuner with weather band support. It also has a stereo auxiliary input and a USB port, which means you can easily connect a thumb drive to play MP3 or WMA audio files.

Defender Audio
The compact PMX-1 media receiver mounts just above the rear-view mirror for easy visibility and control.

The PMX-1 includes a built-in four-channel amplifier rated to produce 25 watts of power into 4-ohm speakers. That’s about 20% more power than most car radios. The radio also has a built-in seven-band equalizer to let your installer fine-tune the performance of your audio system.

You can even control the PMX-1 from your iPhone or Android smartphone using the RF Connect app. Download the app and pair your phone to give you source and volume control while you’re having lunch or hanging out by the campfire. Rockford Fosgate’s optional PMX-BTUR Bluetooth universal remote is a very worthwhile upgrade. With this remote attached to your steering wheel, you can control the audio system wirelessly.

Defender Audio
The optional PMX-BTUR Bluetooth remote for the PMX-1 makes adjusting the sound system on the trails easy.

TMS5 Speakers Deliver Big Sound

Initially designed for the Tour-Pak speaker locations on the back of many Harley-Davidson motorcycles, the TMS5 speakers are a perfect fit for the Defender audio system. These 5.25-inch coaxial drivers feature carbon-fiber reinforced polypropylene woofer cones with a Santoprene rubber surround for excellent longevity. An ultra-efficient neodymium ring magnet motor works with the oversized 35-mm voice coil to produce impressive output with minimal power.

A 25-mm proprietary film dome tweeter with a neodymium magnet handles high-frequency reproduction. An integrated phase plug over the tweeter helps deliver even sound distribution through the listening environment. The heart of these speakers is a glass-reinforced polymer frame that can withstand extreme temperatures. Rockford Fosgate rates the TMS5 speakers as being 91 dB efficient (at 1W/1M) and capable of handling 65 watts of power. As is practice with Rockford Fosgate, these specifications comply with the CTA-2031 standard, so you know you can trust them.

Defender Audio
Speaker pods that mount to the roof of your Defender serve as an ideal enclosure for the TMS5 speakers.

Features of the DEFEND17-STG1

No speaker will sound good without an appropriate enclosure. The DEFEND17-STG1 system includes durable, weather-resistant pods that attach to the steel roll bar on your Defender. Once in place, the bracket and mounting panel for the PMX-1 source unit fit in the middle to hold everything securely. Your installer doesn’t have to drill holes or cut anything to complete the installation. Rockford Fosgate includes all the wiring and fasteners needed to complete the installation.

Defender Audio
The DEFEND717-STG1 works with two- and four-door Defenders and mounts securely at the top of the windshield.

Designed to Sound Great for Years

All Defender audio system components feature Rockford Fosgate’s Element Ready design. This means they’re constructed from UV-resistant materials, so they won’t fade, yellow or crack. They are also weather-resistant, so they’ll continue to work if they get wet, dusty or muddy. Where Rockford Fosgate takes things further is their testing to ensure that the products can handle extreme temperatures. Whether blasting through the woods on a hot August afternoon or returning from a mid-winter hunting expedition, you can count on your audio system to keep working. The Defender system is also engineered to cope with the impacts and vibration that are typical for side-by-side and off-road applications. Rockford Fosgate stands behind its powersports audio upgrade solutions with a two-year warranty.

Defender Audio
Water, dirt, dust, extreme temperatures and vibration are no match for Rockford Fosgate’s Element Ready powersports products.

Upgrade Your Can-Am Defender with Rockford Fosgate Audio Today!

If you’re looking for a great way to add an audio system to your Can-Am Defender, visit the Rockford Fosgate website and check the compatibility chart to make sure your model year and trim level are compatible. You can find an authorized Rockford Fosgate Dealer near you using their Locator Tool to purchase the system and have it installed. Be sure to check out Rockford Fosgate on YouTube, Facebook and Instagram to see what other amazing car audio, marine, motorcycle and powersports audio products they are introducing.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, PRODUCTS Tagged With: Rockford Fosgate

Understanding Speaker Quality: OEM Speakers

OEM Speaker Quality

Up to this point, we’ve explained the difference in performance between entry level, poorly designed and premium car audio amplifiers. We hope you’ve found this informative, and now it’s time we took a close look at car audio speakers. No car audio component is more crucial than speakers for reproducing music with accuracy and clarity.

This series of articles will analyze the impedance, frequency response, output capability and distortion characteristics of different car audio speakers. The goal is to give those of you who want to upgrade the clarity and performance of your audio system a clear correlation between design features, specifications and, ultimately, performance.

OEM Speaker Quality
The woven fiber cone and rubber surround of this OEM Honda Civic speaker.

Factory-Installed Honda Civic Speaker

I have a set of door speakers from a Honda Civic for our first subject. This is a woofer (no tweeter) with an effective cone diameter of 125.5 millimeters measured from the middle of the surround on one side of the driver to the center on the other side. The cone is made from a woven yellow fiber which could be of glass or aramid composition. The dust cap is formed from soft textile but is much less rigid. The speaker has a rubber surround, which lasts longer than foam.

Mechanically, the speaker has a relatively small-diameter flat linear spider bonded to a 1-inch voice coil former. There’s no cooling vent on the rear of the magnet or venting under the spider mounting ledge. The basket is formed from injection-molded, glass fiber-reinforced polycarbonate and has six deeply reinforced spokes. As is typical for an OEM speaker, the mounting flange includes a built-in spacer with an integrated gasket that will bring the speaker out near the grille in the interior door trim panel. Overall, aside from a small voice coil and lack of cooling technologies, the design offers nothing of significance to complain about.

OEM Speaker Quality
Many OEM speakers include mounting provisions that place the cone close to the interior trim panel’s grille.

Measuring Thiele/Small Parameters

Every speaker of every size can have its low-frequency characteristics modeled by a set of measurements and values summarized as Thiele/Small parameters. These measurements can be used with enclosure simulation software to predict how the driver will behave in an enclosure.

The Thiele/Small parameters quantify the driver’s suspension compliance, resonant frequency, mechanical Q, electrical Q and motor force. The information does not describe any nonlinearities in the suspension or magnetic fields or the excursion limits of the design. Far too many amateur audio enthusiasts think you can quantify the low-frequency sound quality of a speaker using enclosure simulation with Thiele/Small parameters. You can’t.

I’ll use my Clio Pocket with the added mass process to measure this information for the Honda speaker.

OEM Speaker Quality

Is there anything we can discern in terms of performance from the measured Thiele/Small parameters? The first thing we see is that the driver has a relatively high total Q (Qts) of 0.69. This will add a little resonant bump in output in the lower midbass region. It’s likely a good design trade-off for a speaker designed to be used without a subwoofer, as it will add a touch of warmth to the sound. However, in absolute terms, this will be a bit of unwanted distortion. Lastly, the predicted efficiency is relatively high at 89.04 dB SPL when driven with 1 watt of power and measured at 1 meter. This is also normal for an OEM speaker as they trade low-frequency output for increased output at higher frequencies. The ~10-gram moving mass supports this theory.

Let’s look at what the BassBox Pro enclosure simulation software predicts this driver will do in our 3-cubic-foot test enclosures. I chose this volume as it’s typically large enough to have minimal effect on the driver’s performance and should simulate how the speaker will behave in a door or rear parcel shelf.

OEM Speaker Quality
The low-frequency response of our Honda door speaker in an infinite baffle application.

As you can see from the graph above, this is more of a midrange driver than a woofer. I guessed at the 30-watt power handling based on the diminutive size of the voice coil and lack of cooling features. In terms of predictions, the driver has a -3 dB frequency of 98 hertz and would greatly benefit from being used with a subwoofer.

Measuring Driver Impedance

Part of measuring Thiele/Small parameters is to make a series of impedance sweeps. Impedance is the opposition to the flow of alternating current (AC) signals. As you can see from the graph below, the driver has a fairly tall, narrow peak around its resonant frequency of 74.7 hertz. You can also see the increase in inductance at higher frequencies as the upward trend to the right.

OEM Speaker Quality
Impedance sweep of the Honda Civic’s 6.5-inch door speaker.

We can see something else in this graph. Something has caused a noticeable resonant peak at about 700 to 800 Hz, and there are additional wiggles in the response at 2.4, 3.7 and 5.2 kHz. These are likely caused by the cone, dust cap or surround resonating. We’ll see if any of these translate into quantifiable distortion in the acoustic measurements.

Speaker Acoustic Measurements

With the driver loaded into my 3-cubic-foot test enclosure, I placed it on the floor of my lab. The microphone from the Clio Pocket is 1 yard above the top edge of the cone, where it meets the surround. We’ll use this position for all speakers going forward. We’ll begin the testing by taking frequency response measurements at increasing drive levels. While there is no specific standard, we’ll clone what Vance Dickason uses in his transducer tests in Voice Coil magazine with 0.3, 1, 3, 6, 10 and 15 volts. It’s doubtful that the driver will remain linear in output at the 10- and 15-volt levels as those values equate to 25 and 56 watts of power into a 4-ohm load. I will add a 2-volt measurement that equates to 1 watt into a 4-ohm load.

Before we get into the analysis of the speaker, we need to understand a few things about the measurements. First, the information below 30 Hz can be ignored. There is no output of 100 dB SPL at 10 Hz. Second, the dip at 130 Hz is a reflection in the room. It can be ignored as well. We know this is an acoustic cancellation because there is no dip or peak in the impedance or distortion curves. Sorry, I don’t happen to have an anechoic chamber at my disposal. In the meantime, I’ll continue to purchase lottery tickets!

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 0.3-volt RMS sweep.

Well, here’s our first look at the Honda speaker. From 160 Hz through to 1.5 kHz, the response is adequately flat given the non-anechoic characteristics of my lab. From 1.5 through to 5.5 kHz, there is a bump in the output of about 6 dB.

The black trace lower in the graph is the total harmonic distortion (THD) measured by the Clio. Let’s look at a few frequencies and make some percentage distortion calculations. From 200 through to 400 Hz, the harmonic distortion is -49 dB, equating to 0.35% THD. At 80 Hz, distortion is at 1.5%, and the significant bump in distortion around 1.3 kHz represents approximately 0.89% distortion.

Let’s sweep it again with a little more voltage – this time, the signal generator is set to 1 volt RMS.

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 1-volt RMS sweep.

The first thing to observe at this higher drive level is that the output increases linearly. All frequencies are roughly 10 dB louder. This is good because neither the suspension compliance nor the motor force has become a limiting factor. Something is happening up at 4.5 kHz that’s caused a bump in the distortion curve. Overall, though, it’s not too bad for this roughly 0.25-watt playback level.

Let’s bump things up to 3 volts.

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 3-volt RMS sweep.

In terms of frequency response, things remain nice and linear. All frequencies are once again about 10 dB louder. What isn’t so good is the harmonic distortion characteristics. A bump appears between 700 and 900 Hz at almost 2% distortion. This would be audible if not buried with other audio information. Distortion in the bass frequencies, 70 Hz, is over 3%. This 3-volt drive level equates to roughly 2.25 watts of power for a nominal 4-ohm speaker.

OK, how about 6 volts from the function generator for the next sweep?

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 6-volt RMS sweep.

A drive level of 6 volts is roughly 9 watts of power into a 4-ohm load. The graph above shows that distortion at all frequencies has increased by more than the increase in fundamental output. For example, when driven with 3 volts at 900 Hz, the THD was around 2%. Now, with 6 volts, the distortion has increased to 3%. Remember that bump we saw in the impedance graph around 800 Hz? Well, now it’s back as a peak in the distortion graph. You’d be surprised what you can learn from impedance graphs.

Last but not least, let’s feed this driver with a 10-volt sweep that equates to about 25 watts of power.

OEM Speaker Quality
Frequency response of this Honda speaker when driven with a 10-volt RMS sweep.

Though we only picked up about 3 dB more output, the distortion has increased significantly. We have 7% distortion at 800 Hz and over 3.5% at 200 Hz. If we look down in the bass region, 80 Hz is at about 10% total harmonic distortion. In short, this speaker would sound pretty bad when driven with much more than 10 to 15 watts of power and would be screaming at 25 watts.

Better Speakers Offer Better Performance

In terms of establishing a foundation for our measurements and speaker comparisons, we’ll stop here. This article will serve as a benchmark for what looked like a reasonable quality OEM speaker. We’ll test some speakers that might be better and some that might be worse over the next few months. This information should allow us to develop a correlation between design features and performance. In the meantime, if you’re shopping for new car audio speakers, drop by your local specialty mobile enhancement retailer to audition some options for your vehicle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Car Audio

Carjacking Is on the Rise. It’s Time to Protect Yourself!

Carjacking

If you’ve been watching the news during the first half of 2022, you know that the number of carjackings taking place in major cities is increasing at an alarming rate. Why are criminals resorting to face-to-face confrontations? What should you do if someone approaches your vehicle? How can you protect yourself? The answers are all surprisingly simple.

Why Is Carjacking Suddenly Popular?

If a thief wants to ship a luxury or rare vehicle to another country, they must include a set of keys. If a relay attack is used to start the car, truck or SUV, the bad guys still need to buy new keys or fobs and have them programmed to the vehicle. The process could cost them upwards of a thousand dollars, and frankly, is a hassle. If they don’t have an original remote fob or key, the process is even more difficult and expensive. What if there were an easy way for them to get the vehicle and a key? The answer is carjacking.

What Is Carjacking?

Here’s a typical carjacking scenario. You leave for work in the morning in your Ford F-150. You pull up to a stop sign behind another vehicle. Suddenly, someone approaches your vehicle with a gun drawn. They order you out of the truck and drive away. Chances are, the car stopped in front of you at the sign (for longer than it should have been) is an accomplice to the crime and was there to distract you.

While it’s logical to think that expensive vehicles are carjackers’ primary target, any vehicle that can quickly be converted to money is at risk. So, whether it’s a Range Rover or BMW, a Toyota Corolla or Honda Civic, the risk is surprisingly similar. A whole car might be shipped overseas, or for other popular cars or trucks, the drivetrain, wheels and tires, airbags and seats might be sold piece by piece.

Carjacking
Many vehicles are stolen or carjacked because of their popularity, not just their value.

How Can You Prevent a Carjacking?

If you or your vehicle has been targeted, it might be difficult to prevent this unfortunate incident from taking place. If you have a dashcam installed or made it clear you have an aftermarket alarm (by unlocking the vehicle with an audible siren chirp), the thieves might move on to a different car or truck.

If you park somewhere with a lot of people around, you’re much less likely to run into trouble. This isn’t always easy, especially if you live in a quiet subdivision.

If you are well aware of your surroundings and notice someone approaching your vehicle, you can honk the horn or trigger the panic mode using your key fob. Thieves don’t ever want unnecessary attention. With that said, we suggest avoiding all aggressive behavior.

If someone approaches you with the intent to steal your vehicle, do exactly what you are told. Exit the vehicle with your phone, wallet or purse and let them take it. It’s just a vehicle. It can be replaced. Don’t challenge them. In fact, don’t say anything other than Yes or OK. Just step aside and let them go. Their adrenaline will be pumping, so even snide remarks could upset them and make things worse.

Carjacking
You are much more vulnerable if you’re stopped on a quiet side street than in a busy parking lot with other people around you.

Use Technology To Get Your Vehicle Back

In our opinion, equipping your vehicle with a telematics system that includes GPS tracking features is the best way to ensure that you’ll have your vehicle back in your driveway quickly. If you have a system such as DroneMobile installed and carjackers approach with guns drawn or they show one tucked into their waistband, step aside and let them go. Once they’re gone, call 911 right away and launch the DroneMobile app on your phone. You can give the police officers the exact location of your vehicle almost instantly. Let them decide how to handle the situation. Chances are, they’ll block the road and stop the thieves, or wait until the vehicle stops then take them into custody. Either way, getting your car or truck back should be a simple process. It might not be the same day, but it will get back to you quickly.

Carjacking
DroneMobile can pinpoint your vehicle’s location in seconds. You can provide this information to the police to help catch carjackers.

Share Accurate Information with Police

A little tip on providing location information to authorities: More and more emergency services like law enforcement, fire departments and ambulances are using an app called What3words. The app converts specific longitude and latitude data (which can be your current location) into a set of three simple English words. A 911 operator can use those words to give police officers a location with 10 feet of precision. This location information is more accurate than a street address, which can often be off by one or two houses or buildings. No matter what the scenario is, if you’re calling for help, providing your location using What3words can prevent confusion and help you get the assistance you need more quickly.

Upgrade Your Vehicle with DroneMobile Telematics

Whether you are worried about carjackings or simply want the benefit of a remote car starter and keyless entry system with smartphone control, drop by a local authorized DroneMobile retailer today. Should the unthinkable happen and you are carjacked, you’ll have all the tools you need to help the police apprehend the thieves and get your vehicle back.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: RESOURCE LIBRARY, ARTICLES, Driver Safety

  • « Previous Page
  • 1
  • …
  • 22
  • 23
  • 24
  • 25
  • 26
  • …
  • 111
  • Next Page »

Recent Articles

A close up of the headlight of a white vehicle in the daytime

Shining a Light on Headlight Beam Patterns: What You Need to Know

December 14, 2025 

Every fall, car stereo and automotive accessory shops install thousands of lighting upgrades. These days, the most common upgrade is a set of LED headlight bulbs that fit into the … [Read More...]

A woman looking at various types of remote starters

Choosing the Best Car Starter Remote

December 8, 2025 

Under the hood, most remote car starters are very similar. Most brands offer two or three different controllers and allow the shop you work with to bundle those units with … [Read More...]

File folders showing on a car audio interface

Managing Large Music Collections in Your Car

December 7, 2025 

Having music playing while driving is not only entertaining, but it can be very relaxing. Enjoying your favorite songs while stuck in traffic or on a long drive can help time pass … [Read More...]

GPS tracking

Stay Ahead of Thieves: The Power of GPS Tracking and Location Alerts!

November 30, 2025 

Unfortunately, concern over car and truck theft continues to increase. Thieves seem to work tirelessly to conjure up methods of bypassing factory-installed security systems. Our … [Read More...]

A lot of car audio equipment set up in the back of an SUV

Why Battery Voltage is Key to Your Car Audio Amp’s Performance

November 23, 2025 

A short while ago, while testing an amplifier's maximum power output, we observed how significantly the power increased with higher supply voltage. This observation made us realize … [Read More...]

Customer Reviews

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Quakertown Showroom and Installation Facility


Get Directions to Clear Vibrations

Hours

Monday, Tuesday, Wednesday, Thursday, Friday9:00 am – 5:00 pm

Services

  • Car Audio
  • Custom Installation
  • Fleet Services
  • Driver Safety
  • Remote Car Starters

Connect With Us

  • Facebook
  • Instagram
  • Twitter
  • YouTube

Copyright © 2025 Clear Vibrations · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...